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Statistical inference and mechanistic, process-based modelling represent two

philosophically different streams of research whose primary goal is to make

predictions. Here, we merge elements from both approaches to keep the

theoretical power of process-based models while also considering their pre-

dictive uncertainty using Bayesian statistics. In environmental and biological

sciences, the predictive uncertainty of process-based models is usually

reduced to parametric uncertainty. Here, we propose a practical approach

to tackle the added issue of structural sensitivity, the sensitivity of predic-

tions to the choice between quantitatively close and biologically plausible

models. In contrast to earlier studies that presented alternative predictions

based on alternative models, we propose a probabilistic view of these predic-

tions that include the uncertainty in model construction and the parametric

uncertainty of each model. As a proof of concept, we apply this approach to

a predator–prey system described by the classical Rosenzweig–MacArthur

model, and we observe that parametric sensitivity is regularly overcome

by structural sensitivity. In addition to tackling theoretical questions about

model sensitivity, the proposed approach can also be extended to make

probabilistic predictions based on more complex models in an operational

context. Both perspectives represent important steps towards providing

better model predictions in biology, and beyond.
1. Introduction
With the need for more accurate predictions in biology and environmental

sciences [1–3], two philosophically different streams of research have been grow-

ing, statistical inference and mechanistic modelling. While the former aims to

make predictions based on uncovering statistical relationships in large datasets,

mechanistic modelling aims to make predictions based on causal mechanisms

that explain observed patterns. In practice, the pros of one approach are the

cons of the other, so a promising way forward would be to combine them in a

‘symbiotic relationship’ [4]. Here, we provide an example of such cross-fertilization.

Specifically, we use Bayesian statistics to present probabilistic predictions of a

deterministic mechanistic model—built around empirical data—in a way that

takes into account uncertainty both in model construction and model

parameterization. We, therefore, improve the model’s predictive capability by

including prediction uncertainty while maintaining the explanatory power of

a mechanistic model. As our focal model, we use the Rosenzweig & MacArthur

[5] predator–prey model, which is known to be ‘structurally sensitive’ (as

defined by Cordoleani et al. [6]); that is, apparently minor changes in model for-

mulation can lead to a dramatic change in both quantitative (predicted

biomasses over time) and qualitative predictions, such as prey–predator

oscillations or the coexistence of alternative stable states [7–9].

Structural sensitivity is a common phenomenon that emerges in mechanistic

biological models, which usually aim to summarize multi-level processes into
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equations after adopting simple assumptions regarding the

complexity of the biological system of interest. As the entire

complexity can rarely, if ever, be taken into account, available

empirical data may be insufficient to statistically discriminate

between alternative models [6,10]. Alternative models are

known to make different predictions when the uncertain pro-

cess is the infection in a host–pathogen system [11], the

colimited uptake of nutrient [12], or predation in predator–

prey and food-web models [6–8,13–20]. Some studies also

indicate that major ocean-scale predictions, such as the domi-

nance of phytoplankton groups, primary production and

export to the deep ocean, can be deeply affected by this form

of sensitivity [21–23]. In a way, structural sensitivity can be

considered an extension of classical parameter sensitivity;

moreover, Cordoleani et al. [6] and Adamson & Morozov [14]

have provided examples where a change in model formulation

has a higher effect on model predictions than an equivalent

change in parameter values. However, as far as we know,

such an analysis has never been statistically performed

simultaneously across alternative models and all plausible

parameter values.

Here, we ask whether the predictions made by a biological

model are more sensitive to the uncertainty in its parameteriza-

tion or to its mathematical formulation. To answer this

question, we present a probabilistic view of predictions made

by a deterministic predator–prey model, the Rosenzweig &

MacArthur [5] model (§2). In particular, we explore the

consequences of alternative predator functional responses in

changing the behaviours predicted. We achieve the shift from

determinism (§3) to probabilism (§4) by merging bifurcation

theory for model analysis [24–26] and Bayesian statistics

[27–29], thus harnessing the latter’s ability to include uncer-

tainty in a model and to propagate it forward into

predictions. Intriguingly, our probabilistic approach—applied

on three example datasets—indicates that parametric uncer-

tainty is regularly overcome by model uncertainty (§5), an

observation that has broad implications across various other

challenges faced in biology.

2. A simple predator – prey model
We study the Rosenzweig–MacArthur model [5]:

d N
dt
¼ rN 1�N

K

� �
� f(N)Y

and
d Y
dt
¼ (ef(N)� m)Y:

9>>>=
>>>;

(2:1)

Here, the prey population N follows logistic growth with per
capita growth rate r and environmental carrying capacity K in

the absence of predators. The predator population Y has a

linear per capita mortality rate m, conversion efficiency e,

and functional response f (N ). All parameters and variables

are strictly positive to ensure their biological meaning.

In line with the biology, a well-behaved functional

response is expected to be strictly increasing, concave, satur-

ating and vanishes only at 0. Here, we consider three possible

alternatives for f [ F ¼ f f(H ), f(I ), f(t)g, all of which only

depend upon two parameters:

f (H)(N) ¼ a(H)N
1þ a(H)h(H)N

, f (I)(N) ¼ 1

h(I) (1� e�a(I)h(I)N),

f (t)(N) ¼ 1

h(t) tanh (a(t)h(t)N), (2:2)
which are the Holling type II [30,31] (later denoted Holling),

Ivlev [32] and the hyperbolic tangent [10], respectively. The

parameters in each have the same mathematical meaning:

1=h(�) corresponds to the maximum uptake rate and a(�) corre-

sponds to the function’s slope in the limit of no prey, but they

originate from different perspectives. For Holling, a(H ) and

h(H ) are predator attack rate and handling time. For Ivlev,

1/h(I ) and a(I )h(I ) are predator maximum digestion rate and

satiation coefficient. The hyperbolic tangent is actually a phe-

nomenological model without underlying biological

assumptions, which nevertheless can at times provide a

more accurate description of data than others [10].

To drop one parameter and ease the analysis without loss of

information, we re-scale model (2.1): y ¼ Y/r, t ¼ rt, m ¼ m/e,

1 ¼ e/r, and write x ¼ N. The re-scaled model reads:

d x
d t
¼ x 1� x

K

� �
� f(x)y

and
d y
d t
¼ 1(f(x)�m)y:

9>>=
>>;

(2:3)

Upon re-scaling, the remaining parameters are (i) the prey car-

rying capacity K, (ii) the scaled predator mortality m, (iii) the

timescale factor 1 and (iv) the two parameters a(�) and h(�)

from the functional response that must be estimated from

data. These first two are of biological interest as they might

be affected by external factors (e.g. environmental degradation,

additional predator mortality due to harvesting).
3. Probabilistic predictions
3.1. Fitting functional responses on data
Empirical data were not considered in previous structural

sensitivity analyses in Rozensweig–MacArthur model [8,9].

As our baseline, we therefore use three examples of func-

tional-response data to provide an overview of our approach

and its practical use. To introduce the approach, we first

focus on one of these data sets (until §5). Specifically, we use

data from an experiment where two individuals of Gazella
thomsoni were eating hand-assembled grass swards, and their

grazing rate as a function of grass biomass (i.e. a functional

response) was estimated [33, fig. 1]. This consumer–resource

system can be modelled with generic assumptions on popu-

lation dynamics: (i) grass biomass follows a logistic growth

limited for instance by space and nutrients availability;

(ii) the growth rate of Gazella thomsoni population is pro-

portional to its grass intake which is a strictly increasing,

concave, saturating function of grass biomass that vanishes in

absence of grass; (iii) Gazella thomsoni has a linear per capita
mortality rate (e.g. ageing, harvesting). All these assumptions

define the Rozensweig–MacArthur model, which is often

refered as a predator–prey model but is generic enough to

also describe a variety of consumer–resource systems.

Previous studies on structural sensitivity compared a deter-

ministic analysis of model predictions based on best-fitted

functions ([8,9,11,18,20], among others). Fitting a function to

data implies uncertainty in the parameters being inferred,

which means that there is additional insight to be gained by

considering both parameter and model uncertainty. To per-

form a probabilistic analysis of model predictions, we first

estimate the parametric uncertainty while fitting each func-

tional response to data. This is achieved by a Hamiltonian

Markov chain Monte Carlo (HMCMC) algorithm computing

http://rsif.royalsocietypublishing.org/
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Figure 1. Results of the Markov chain Monte Carlo estimate of parameters probability densities ( posterior distributions) for each function. (a – c) Bivariate posterior
probability distributions (grey levels) for each functional response parameter, i.e. the likelihood of these parameter values based on available data. Points ‘þ ’
correspond to parameter values sampled to perform the probabilistic model analysis. Black bullets (one per panel) indicate the parameter values with the maximum
likelihood, i.e. parameter values giving the best fit to data. (d – f ) Functional responses fit to experimental data ( points ‘þ ’). The parametric uncertainty from the
HMCMC estimation gives a confidence interval (95%, shaded area) around the best-fitted functions (curves). Model uncertainty is derived through the relative
likelihood that one function fits new data better than the others, knowing their respective parametric uncertainty. (Online version in colour.)
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the probability P(uf ) that the set of functional-response

parameters uf ¼ (a( f ), h( f )) of function f predict observed data

(figure 1a–c), assuming a Gaussian noise around f ([29], details

in electronic supplementary material, appendix). The prob-

ability P(uf ) is proportional to the likelihood of uf, and the set

of probabilities corresponding to the inferred parameter

values is called the posterior distribution in Bayesian statistics.

This posterior distribution of uf is estimated by the HMCMC

algorithm by learning from available data (figure 1a–c). The

maximum of this distribution occurs at parameters having

the maximum-likelihood and thus giving the best fit to data

based on this criterion. Therefore, the HMCMC approach

gives the same best-fitted functions as a maximum-likelihood

estimation, but it adds information about parametric uncer-

tainty for each function by considering the whole posterior

probability distribution (figure 1d– f ).
Based on the posterior distribution for each function, we

use the widely applicable information criterion (WAIC) to

derive Akaike weights which correspond to the relative predic-

tive accuracy of each function—i.e. the probability P( f ) that

function f [ F gives the best fit to new data, conditional to

the alternative functions that we consider [29]. This relative

accuracy can be estimated using any other suitable method

than WAIC, without altering our generic framework. For the

first dataset, the hyperbolic tangent has the highest probability

of 0.572 compared to 0.350 for Ivlev and 0.079 for Holling

(exact values may change due to algorithm stochasticity,

table 1). Based on that, one could decide to focus only on the

hyperbolic tangent as it seems to be the best function. How-

ever, doing this neglects the fact that the alternative functions
can be a better description of new data with a significant prob-

ability (0.428). Our approach hence aims to keep all the

alternative functions, and to merge their predictions based on

their respective likelihood through the use of model averaging.
3.2. Overview of model predictions
Let us first present an overview of model predictions for a

given functional response f and its plausible parameter

values uf. We performed a bifurcation analysis based on

analytical and numerical results (mathematical details in elec-

tronic supplementary material, appendix) that reveals all the

qualitative asymptotic dynamics predicted by the model for

any environmental condition (K, m). We limited the range of

these conditions to K [ ]0, xmax], where xmax � 197 is the maxi-

mal prey abundance in functional response data, and m [ ]0,

mmax], where mmax :¼
P

f[F P(f)
Ð

R2
þ

P(uf , D)f(xmax) duf � 5:44

is the average mortality rate (among all functional responses)

that allows predator survival for the considered range of prey

abundance. The choice of mmax restrains our analysis to the

range of parameter values that will give interesting results.

Any m . mmax will lead to predator extinction in most cases,

and this is a trivial result that presents no interest for our

study as all models necessarily give identical predictions.

Figure 2a–c presents model predictions based on each

functional response and including parametric uncertainty. The

effect of parametric uncertainty will be introduced in the next

subsection and is shown by the blurred colours in the figure.

For the moment, the reader can have an overview of model pre-

dictions for given parameter values uf by looking at the areas

http://rsif.royalsocietypublishing.org/
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Figure 2. Probabilistic predictions of Rosenzweig – MacArthur model, made with each alternative functional response (a – c) and averaged (d). Probabilistic pre-
dictions include both parametric uncertainty for each function (a – c), and model uncertainty for the average prediction (d). Each panel presents a probabilistic
bifurcation diagram, where the colours indicate the qualitative system dynamics depending on the predator mortality rate and the prey carrying capacity: predator
extinction (white), prey – predator coexistence at equilibrium (blue), prey – predator oscillations (green) and bistability with equilibrium coexistence or oscillations
depending on initial population sizes (red). Colour gradients indicate the probability (red-green-blue levels) of each model predictions. Thus, blurred areas (e.g. top
left of panel (d)) indicate uncertain predictions. Calculations at point ‘þ ’ are detailed in table 2. (Online version in colour.)

Table 1. Comparison of the three functional responses fit to data on Gazella thomsoni feeding on grass swards, based on WAIC (widely applicable information
criterion). WAIC estimates are given plus or minus standard error.

functional response WAIC difference with best WAIC weights P( f ) ranking

Holling 231.5+ 9.2 4.0+ 2.6 0.079 3

Ivlev 230.5+ 9.1 1.0+ 0.9 0.350 2

hyperbolic tangent 227.5+ 9.1 0.0 0.572 1
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with sharp colours. In this model, there is a trivial extinction

equilibrium E(0) ¼ (0, 0) without any species, which can be

reached only if the prey is initially absent. If both species are

initially present, different asymptotic dynamics are predicted

depending on the parameters and form of the functional
response. An extinction equilibrium E(1) ¼ (K, 0) without the

predator always exists, but it is only stable in the white area in

the figure. In other areas, prey carrying capacity is high

enough to sustain the predator population and a coexistence

equilibrium E(2) ¼ (x(2), y(2)) exists. It starts to exist for higher

http://rsif.royalsocietypublishing.org/


Table 2. Example to detail probabilities related to uncertainty, for each functional response (knowing f ) and then averaged together (f-independent) based on
WAIC weights from table 1. This example corresponds to a ¼ (K* 5 42.6, m* 5 1.08), the ‘þ ’ point in figures 2 – 4.

description probability Holling Ivlev hyp. tangent average

function weight P( f ) 0.258 0.326 0.416

predicting qualitative dynamics P(‘extinction0jf ) 0.000 0.000 0.000 0.000

P(‘equilibrium0jf ) 0.004 0.502 1.000 0.748

P(‘oscillations0jf ) 0.996 0.498 0.000 0.252

P(‘bistability0jf ) 0.000 0.000 0.000 0.000

source of predictive uncertainty:

— parametric uncertainty Uparam( f ) 0.001 0.175 0.000 0.061

— model uncertainty Umodel( f ) 0.373 0.162 0.126 0.158

— total Utot( f ) 0.373 0.337 0.126 0.219

sensitivity index S( f ) 0.997 20.038 1.000 0.637
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carrying capacity values when predator mortality (i.e. the loss

that must be overcome to ensure predator survival) is higher.

This equilibrium is stable only in the blue and red areas. In the

green area found at high carrying capacity, the paradox of

enrichment [34] has destabilized the coexistence equilibrium

and there are stable prey–predator oscillations. Stable oscil-

lations and the stable coexistence equilibrium are both

possible in the red area, which is only predicted with the hyper-

bolic tangent at low predator mortality and high carrying

capacity. In this bistability area, the model predicts that the

system will converge to one of the two alternatives depending

on its initial state. The presence of alternative stable states is of

particular interest to study ecosystem resilience when facing

external disturbances [18,35]. This other form of the paradox

of enrichment has been found in predator–prey models incor-

porating a more detailed description of organisms biology

[19]. All of the above qualitative predictions are independent

of the timescale 1, except for the bistability area that we com-

puted numerically for 1 ¼ 1; this area starts at lower (higher)

K for higher (lower) 1, which does not affect our conclusions.

As a general conclusion, using Holling and Ivlev functional

responses leads to similar patterns of predictions and always

one stable state whereas using the hyperbolic tangent

allows us to predict bistability. Notably, the transitions between

different qualitative predictions occur in different regions of par-

ameter space for different models and correspond to the

following biological phenomena: predator invasion (transcriti-

cal bifurcation: extinction – coexistence), onset of oscillations

through enrichment paradox (supercritical Hopf bifurcation:

coexistence – oscillations), and potential catastrophic shifts

(i.e. tipping points) with a change in the number of alternative

stable states (subcritical Hopf bifurcation: bistability –

oscillations; and limit point of cycles bifurcation: bistability –

coexistence). Note that if the number of alternative stable

states is affected by structural sensitivity, it becomes hard to esti-

mate ecosystem resilience under disturbances [18].

3.3. Introducing parametric uncertainty into predictions
To introduce parametric uncertainty in our analysis, we now

look at the probability that model (2.3) with function f pre-

dicts the different qualitative dynamics X, which can be

any of ‘extinction’, ‘equilibrium’, ‘oscillations’, or ‘bistability’.

For fixed values of the model parameters a ¼ (K, m, e) that do
not relate to f, the probability that functional response f leads

to the prediction X is:

P(X j f) ¼
ð

R2
þ

M(X, a, f , uf )P(uf ) duf , (3:1)

where M(X, a, f, uf ) ¼ 1 if the model based on function f and

with parameter values (uf, a) predicts dynamics X and 0

otherwise, and the integral is over the range of the posterior

distributions of the two parameters in uf. In practice, this

probability (4) is estimated by performing model analysis

for a finite sample of uf values (here 1000 parameter sets)

drawn randomly from the posterior distribution P(uf ) [29].

Computing the probability (3.1) for different model par-

ameters a therefore provides a probabilistic bifurcation

analysis of model predictions based on one functional

response. Translating the probabilities of each predictions

into colour gradients gives the ‘fuzzy’ transitions between

qualitative dynamics (figure 2a–c), showing how parametric

uncertainty propagates into predictions.

3.4. Introducing model uncertainty into predictions
To go further, model uncertainty can be introduced through a

weighted mean over the alternative functions. This allows us

to compute the probability P(X ) that the model generally

predicts the different qualitative dynamics X:

P(X) ¼
X
f[F

P( f)P(X j f): (3:2)

The resulting probabilistic predictions are shown in figure 2d.

Not surprisingly, the average prediction looks most similar

to that made with the hyperbolic tangent since that model has

a probability of 0.572. For low mortality values, the

figure looks greener, with red-green and blue-green areas. In

these areas, the hyperbolic tangent leads to bistability or a

stable equilibrium, respectively, whereas the two other func-

tions lead to oscillations and have a cumulative probability of

0.428. A representative example to illustrate the utility of

these calculations occurs at m� ¼ 1:08 and K� ¼ 42:6 (point

‘þ’ in figure 2), where all functional responses predict comple-

tely different qualitative dynamics: (i) the Holling model

predicts oscillations, (ii) the hyperbolic tangent predicts equili-

brium coexistence, and (iii) the Ivlev predicts both of these

dynamics with roughly equal probability (table 2, upper half).

http://rsif.royalsocietypublishing.org/
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4. Identifying the sources of uncertainty
The probabilistic predictions presented in figure 2 present a

form of predictive uncertainty, in the sense that predictions

can change due to the uncertainty in the choice of a function

and parametric uncertainty. As is commonly done in other

studies, let us assume that we have chosen one function f
among the possible ones. We will now explore the conse-

quences of this choice, both in terms of parametric

uncertainty and model uncertainty.

For the parametric uncertainty, consider two parameter

sets uf for function f drawn independently from their posterior

distribution. We know from (3.1) the probability P(Xj f ) that

one parameter set predicts the dynamics X. Moreover, predict-

ing dynamics X or not is a binary outcome. Therefore, the joint

probability that one set of parameters predicts the dynamics X
and the other does not follow a binomial distribution and is

P(Xjf )[1 2 P(Xjf )]. This probability is maximal (0.25) if there

is an equal probability that f predicts dynamics X or not

(P(Xjf ) ¼ 1 2 P(Xjf ) ¼ 0.5), which corresponds to the highest

uncertainty on predicting dynamics X. Conversely, the prob-

ability is null if there is no uncertainty in predicting

dynamics X, i.e. P(Xjf ) ¼ 0 (f never predicts X) or P(Xjf ) ¼ 1

(f always predicts X). Thus, the total probability that these

two parameter sets ever predict different dynamics is:

Pparam( f) ¼
X
X[Q

P(X j f)[1� P(X j f)], (4:1)

where the sum is across possible qualitative dynamics. Simi-

larly, we can define the probability that different dynamics

are predicted by one parameter set uf of function f and one

parameter set of any of the other alternative functions:

Pmodel( f) ¼
X

g[F,g=f

P(g)

1� P( f)

X
X[Q

P(X j f)[1� P(X j g)]: (4:2)

The sum over alternative functions g is weighted in order to

take into account the respective weight of each alternative to

function f. The probabilities (4.1–4.2) quantify the probabilities

of making different predictions knowing that we are looking at

the parametric or the model uncertainty. This implies that we

can define:

Uparam(f) ¼ P(f)Pparam(f), (4:3)

which equals the parametric uncertainty that is proportional

to the probability that f is the best function to describe new

data, and:

Umodel(f) ¼
1� P(f)
jFj � 1

Pmodel(f), (4:4)

which equals the model uncertainty that is proportional to the

probability that another function than f is the best function to

describe new data. Note that this second probability is aver-

aged over the jFj 2 1 functions other than f, to give an equal

weight to parametric and model uncertainty if all the alterna-

tive functions are equally plausible, independent of their

number. In other words, we are comparing f against one of

its alternatives, not f against all its alternatives, because in the

latter case the approach would always indicate a high model

uncertainty if the number of alternative functions is sufficiently

high. If one chooses the Holling function in our example, the

parameter uncertainty as defined in (4.3) is small in compari-

son to model uncertainty defined by (4.4), as the Holling
function is very unlikely to be the best function (probability

of 0.079) in comparison to the two alternative functions

(figure 3a,b). According to this analysis, the total uncertainty

associated to the choice of function f is:

Utot(f) ¼ Uparam(f)þUmodel(f), (4:5)

with the example for the Holling function shown in figure 3c.

To have a global overview, one can look at the average

uncertainty across all the alternative functions that are

considered (figure 3d ):

�Utot ¼
X
f[F

P(f)Utot(f): (4:6)

To go deeper, we propose to quantify the respective impor-

tance of parametric and model uncertainty in the predictions

made with a function f with:

S(f) ¼ 2
Umodel(f)

Utot(f)
� 0:5

� �
: (4:7)

Note that this index can be computed only if there is uncertainty

in predictions (Utot( f ) . 0). It is positive if model uncertainty is

greater than parametric uncertainty and negative otherwise. In

addition, S( f ) ¼ 1 if the function is not a suitable candidate

(P( f ) ¼ 0) or its parametric uncertainty does not affect the pre-

dicted dynamics, which are affected (in any amount) by

model uncertainty. Conversely, S( f ) ¼ 21 if predictions are

affected by parametric uncertainty, and there is no model uncer-

tainty i.e. P( f ) ¼ 1. Finally, S( f ) ¼ 0 can occur if (i) all alternative

functions have an equal likelihood and they all lead to the same

uncertain predictions (i.e. P(X j f ) ¼ P(Xjg) for all dynamics X
and alternative functions g); or more generally (ii) the function

f is more likely than others but others lead to predictions that

are different enough to get Uparam( f ) ¼ Umodel( f ).

Based on the index (4.7) computed for each function, one

can look at its average value across the alternative functions

to get a global overview of the source of uncertainty in the

model predictions:

�S ¼
X
f[F

P(f)S(f): (4:8)

Figure 4a–c shows the index for the three alternative functional

responses and our first dataset. If Holling is chosen, model

uncertainty is always higher than the parametric uncertainty,

as alternative equations are more plausible and lead to different

predictions. Conversely, if the hyperbolic tangent is chosen,

parametric uncertainty is higher on average than model uncer-

tainty (S( f(t)) , 0 over 66.6% of the parameter space). This

equation has the highest likelihood, which explains why its

own parametric uncertainty appears to be more important.

The Ivlev represents an intermediate case where model uncer-

tainty is higher on average than parametric uncertainty

(S( f(I )) . 0 over 69.0% of the parameter space). On average,

choosing one equation creates a higher predictive uncertainty

due to model uncertainty than parametric uncertainty in

66.3% of the parameter space. It is worth noting that parametric

uncertainty is higher for high mortality rates, which are close to

the predator maximum growth rate that itself is proportional to

1=h. Thus, this parameter value has a strong impact on the pre-

dicted dynamics, explaining why parametric uncertainty is

higher. As a representative example, we show detailed calcu-

lations of these probabilities for (m� ¼ 1:08, K� ¼ 42:6) in

table 2.
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5. Overview of the method’s possible outcomes
and use

The underlying idea behind our approach is that the cost of

choosing one model to make a prediction increases if (i)

there is a high probability that another model also fits avail-

able data well and (ii) the two models make different

predictions. Thus, this approach extends earlier studies on

structural sensitivity ([8,9], among others) by considering

the fact that, even if alternative models predict different

dynamics, one model may outperform others in fitting avail-

able data. Again with the Rosenzweig–MacArthur model, we

illustrate this possibility in figure 5 by using data on

the ingestion rate (i.e. a functional response) of copepods

(Calanus pacificus) feeding on diatoms (centric sp.) to
parameterize the alternative functional responses ([36,

fig. 4]). One functional response—the hyperbolic tangent—

fits the data better than others, with a high probability

(0.853) to be the best description of new data (table 3,

upper rows). Thus, the predictions made with the hyperbolic

tangent functional response strongly drive the average pre-

dictions across alternative functional responses (figure 5b).

Also, the areas of highest predictive uncertainty in figure 5c
are due to the parametric uncertainty of the dominant func-

tion, as indicated in blue in figure 5d. Conversely,

predictive uncertainty is low in areas where it is mostly due

to model uncertainty (in red in figure 5d ). This example illus-

trates the idea that, if a change in equations leads to different

predictions, it mostly matters whether or not alternative

equations are actually likely to be chosen.
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As a third and last example, we fit the functional

responses to the data on the ingestion rate of starved cope-

pods Calanus pacificus feeding on diatoms (Thalassiosira
fluviatilis) [36, fig. 2]. Here, in contrast to the earlier examples,

all three alternative functional responses have roughly the

same likelihood (table 3, lower rows). As a result, the predic-

tive uncertainty of the population model is mostly due to the

model uncertainty (figure 6). This last example shares simi-

larities to the one we used to introduce our approach. In

figures 1–4, two alternative equations had a high likelihood

in comparison to the third. Thus, one may imagine removing

the most unlikely function from the analysis, and to keep

only the equations giving an almost equally good fit. Doing

so will end up either in one of two cases. First, something
like figure 6 where some functions remain equally likely; or

second, something like figure 5 where one of the alternative

functions has a high likelihood in comparison to all others,

and we can imagine only considering this best-fit function.

In this last case, one may remove all functions except the

one giving the best fit. By doing so, our approach simplifies

in a parameter sensitivity analysis, as the scientist decides

that the uncertainty in model construction—defined for the

set of alternative equations that we choose to consider—can

be neglected. Of course, deciding to neglect the uncertainty

in model construction and choosing the best function (accord-

ing to available data) can only be done after considering

alternative models to fit to data, and having determined

that one seems better than others.
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Figure 5. Example where one equation is almost certainly the best one among candidates. Overview of the analysis with data on copepods (Calanus pacificus)
feeding on diatoms (centric sp.). All panels are drawn similarly as in earlier figures: (a) functional responses are fitted to data by a HMCMC algorithm; (b) average
qualitative predictions ( probabilistic bifurcation diagram); (c) average total uncertainty in predictions; (d) source of uncertainty in predictions.

Table 3. Comparison of the three functional responses fit to data on copepods (Calanus pacificus) feeding on diatoms (centric sp. and Thalassiosira fluviatilis),
based on WAIC (widely applicable information criterion). WAIC estimates are given plus or minus standard error.

prey functional response WAIC difference with best WAIC weights ranking

centric sp. Holling 239.4+ 7.7 12.4+ 2.9 0.002 3

Ivlev 248.2+ 7.7 3.5+ 1.2 0.145 2

Hyp. Tangent 251.7+ 8.2 0.0 0.853 1

Thalassiosira fluviatilis Holling 222.6+ 4.8 0.4+ 2.2 0.299 3

Ivlev 222.8+ 4.5 2.0+ 1.6 0.332 2

Hyp. Tangent 223.0+ 3.5 0.0 0.370 1
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6. Discussion
Here, we present probabilistic predictions of system dynamics

in the classical Rosenzweig–MacArthur model that take into
account both model and parametric uncertainty. Overall,

we show that uncertainty in model formulation regularly

leads to a larger predictive uncertainty than does usual para-

metric uncertainty. Moving forward, it is worth noting that
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Figure 6. Example where all alternative equations are equally likely. Overview of the analysis with data on starved copepods (Calanus pacificus) feeding on diatoms
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five times the maximum prey density in data, in order to show all the possible qualitative dynamics predicted by the model, without altering our conclusions.
(Online version in colour.)
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uncertainty likely also involves other parameter values and

processes. For predator mortality and prey carrying capacity,

the resulting prediction uncertainty can be estimated directly

from figure 3. Conversely, a known uncertainty based on

data on the timescale parameter 1 or the intrinsic dynamics

of the prey (here specified as logistic growth) can be taken

into account by also sampling their posterior distributions sim-

ultaneously with those of the functional response and its

parameters. Knowing the respective contribution of different

biological processes to the resulting predictive uncertainty

would be a major step forward. To go this way, sampling a

higher-dimensional parameter space is feasible with existing

algorithms [29], but performing each model analysis might

be computationally prohibitive. Nevertheless, the cost of con-

ducting such an analysis may ultimately be lower than the
cost of making the wrong biological/environmental decision

due to an unreasonable faith in model predictions.

Decreasing predictive uncertainty can be achieved by

decreasing the uncertainty in either model construction,

model parameterization, or both. To do this, the naive idea of

improving the experimental data collection might help to

greatly decrease the model uncertainty. In our three examples,

we are studying a process that is assumed to be a saturating

function of prey abundance. However, if this saturation is not

present in the collected data (figure 6a), it necessarily becomes

harder to identify the best model. Indeed, the model parameter

defining the plateau is less constrained by data (in comparison

to figures 1d– f, 5a), increasing the parametric uncertainty of

each alternative equations. Thus, alternative equations tend

to have highly overlapping confidence intervals, subsequently
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increasing the uncertainty in model selection. Therefore, our

study highlights the importance of designing experiments in

a way that maximizes the constraints on parameter values of

alternative models to decrease the uncertainty in selecting the

‘best’ model.

Finding the ‘best’ model in a given situation may imply

arguments beyond the simple fit of models to data, such as

the fact that one of the alternative equations is a well-

established model in the literature that is based on valuable

theoretical arguments (e.g. underlying mechanisms). Though

we did not do so here, such non-quantitative arguments can

be taken into account in our quantitative analysis thanks to

the concept of prior probabilities. Prior probabilities are used

in Bayesian statistics to give an a priori weight to some par-

ameter values, or here alternative models, before estimating

their likelihood from data [29]. With prior probabilities, one

could thus give more weight to the well-established Holling

functional response instead of the phenomenological hyper-

bolic tangent. As a consequence, this function might become

the best model in the example in the table 3 (lower rows),

where all functions are equally likely based solely on the

data. Conversely, the Holling functional response might

remain the worst model in the example in table 3 (upper

rows), where the hyperbolic tangent is about 400-fold more

likely according to data.

Our framework can also be easily extend to consider quan-

titative as well as qualitative differences in predictions (e.g.

equilibrium versus oscillations). Quantitative differences are

important for topics such as resource management, disease

and pest control, or species invasions. Here, we combined

Bayesian statistics with a qualitative analysis of model predic-

tions (bifurcation analysis). Depending on model complexity

and the question at stake, one can combine Bayesian statistics

with quantitative predictions (e.g. numerical simulations)

or include quantitative aspects in the bifurcation analysis.

Quantitative aspects of structural sensitivity have already

been considered in earlier studies [6,37]. However, including

quantitative aspects in the bifurcation analysis might become

computationally prohibitive. Thus, getting the quantitative

predictions of the model of interest is the challenge in

extending our framework, which is well-suited to consider

uncertainty in both quantitative and qualitative predictions.

The predictions made with the predator–prey model we

used as an example could not be compared to data on the tem-

poral dynamics of the studied system. Indeed, we extracted

functional-response data from studies on grazing/ingestion

rates of a few predator individuals—functional response

sensu stricto—but these studies did not follow the temporal

dynamics of a prey–predator system over many generations

(i.e. the scale of the population model). Conversely, some

experiments on population dynamics are not combined with

functional response experiment, and functional-response par-

ameters are optimized so that the predicted system dynamics

fit the temporal data (e.g. [38,39]). However, if one has access

to both types of data, the additional information on temporal

dynamics can be used to constrain the probabilistic analysis.

One way to do so is to remove candidate models that never

predict the observed qualitative dynamics. Another comp-

lementary way is to perform the parameter estimation with

constraints coming from fitting both the functional-response

data and data on the temporal dynamics. This approach

might be the best way to solve the issue of structural sensitivity.

However, it is worth noting that this is a truly idealistic case.
Indeed, for organisms with a long lifetime (months, years), col-

lecting temporal data on their population dynamics would

require a long-term monitoring (at least many years). There-

fore, making probabilistic predictions prior to such an

experiment would still be of interest, given the time needed

to acquire data.

Though a similar idea has been used to improve parameter

inference [40], as far as we know this is the first time the full

approach proposed here has been used. An intriguing appli-

cation of our probabilistic approach would be to conduct

structural-sensitivity analysis for additional data sets corre-

sponding to other prey–predator species. This might allow

the classification of organisms with population dynamics that

are inherently more or less predictable, either because of par-

ameter values or the uncertainty around their functional-

response data. This approach can also be extended to different

models, for example, to test the recent hypothesis that mass-

balanced prey–predator models with maintenance are less

structurally sensitive [19]. More generally, our proposed

approach may benefit from further cross-fertilization with the

approach of partially specified models [14–16]. That approach

provides generic results but cannot currently make probabilis-

tic predictions of the sort we make here. Another way to

include uncertainty would be to use stochastic differential

equations where the uncertain process is randomly drawn to

include all data variability into model predictions.

To conclude, we have conducted a proof-of-concept study

outlining a novel approach that considers both parametric

uncertainty and uncertainty in biological model construction

while presenting model prediction. We achieved this by bring-

ing elements of Bayesian statistics into the analysis of

deterministic dynamical systems. Here, the prey–predator

system considered is small enough to get analytical results on

bifurcations, as this provides a comprehensive overview of

qualitative model predictions. More complex models can also

be studied by the proposed approach, by adapting the auto-

matic model analysis to model complexity. For instance, a

full overview of qualitative model predictions can be obtained

if a numerical bifurcation analysis can be performed, or a

sample of numerical simulations of different scenarios can be

used for models as large as global ecosystem models. Some

of these models are known to make different large-scale predic-

tions such as the global dominance of phytoplankton groups or

the ocean primary production [21–23]. Those results were

based on comparisons between alternative models, and the

incorporation of our approach would allow probabilistic pre-

dictions to be made based on different plausible biological

models. Indeed, these small changes in model construction

affect predictions at the ocean-scale, but also the coexistence

of alternative stable states and the predicted resilience at the

scale of a few populations in interactions. Therefore, extending

our approach to complex operational models, together with

theoretical analyses to rank the processes and species according

to the level of predictive uncertainty they produced at the eco-

system level, would be critical advances towards a better

knowledge of the uncertainty and forecast horizon (as defined

in [2]) of model predictions in environmental sciences.
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