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Biogeography has traditionally focused on the spatial distribution and abundance of 
species. Both are driven by the way species interact with one another, but only recently 
community ecologists realized the need to document their spatial and temporal 
variation. Here, we call for an integrated approach, adopting the view that community 
structure is best represented as a network of ecological interactions, and show how 
it translates to biogeography questions. We propose that the ecological niche should 
encompass the effect of the environment on species distribution (the Grinnellian 
dimension of the niche) and on the ecological interactions among them (the Eltonian 
dimension). Starting from this concept, we develop a quantitative theory to explain 
turnover of interactions in space and time – i.e. a novel approach to interaction 
distribution modeling. We apply this framework to host–parasite interactions across 
Europe and find that two aspects of the environment (temperature and precipitation) 
exert a strong imprint on species co-occurrence, but not on species interactions. Even 
where species co-occur, interaction proves to be stochastic rather than deterministic, 
adding to variation in realized network structure. We also find that a large majority of 
host-parasite pairs are never found together, thus precluding any inferences regarding 
their probability to interact. This first attempt to explain variation of network structure 
at large spatial scales opens new perspectives at the interface of species distribution 
modeling and community ecology.
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Introduction

Community ecology is ‘the study of the interactions that 
determine the distribution and abundance of organisms 
(Krebs 2009). Despite a general consensus on this defini-
tion (Scheiner and Willig 2007), research on variation in 
community structure (beta-diversity) has mostly focused 
on the spatial and temporal turnover of species composi-
tion (Anderson et  al. 2011). Such research usually neglects 
variation in the way species interact with each other, despite 
accumulating empirical evidence that it is a major source 
of diversity (Poisot  et  al. 2015). Given this omission, it is 
perhaps not surprising that biogeographers are still strug-
gling to establish whether interactions actually impacts the 
distribution of species at large spatial scales (Kissling  et  al. 
2012). An interaction is conceived as the direct effect of the 
action of one species on the demography on another spe-
cies; whether it scales up and impacts the (co-)distribution of 
species remains matter of debate at the moment (González-
Salazar et al. 2013, Wisz et al. 2013, Cazelles 2016, Harris 
2016, Godsoe  et  al. 2017). Treating interactions as fixed 
events nonetheless neglects a large part of the complexity of 
empirical communities, and will most likely deliver biased 
metrics (Poisot et al. 2016b). Recent attempts at accounting 
for interactions in species distribution models (Pellissier et al. 
2013, Pollock  et  al. 2014, Ovaskainen  et  al. 2017) have 
brought some methodological advances, but are not suffi-
cient for two reasons. First, these techniques are still based 
on a ‘species-based’ approach to communities, where interac-
tions are merely treated as fixed covariates affecting distribu-
tion. Second, they fail to provide a conceptual step forward, 
both in their treatment of interactions and in the quality of 
the predictions they make.

Network approaches offer a convenient representation of 
communities because they simultaneously account for spe-
cies composition and their interactions. Species are repre-
sented as nodes, so that networks already encompass all the 
information used by current approaches of species distribu-
tion modeling; in addition, interactions are represented by 
links, so that networks provide additional information on 
community structure. To date, studies of network diversity 
have mostly been concerned with the distribution of inter-
actions within locations, and less so with variation among 
locations (Dunne 2006, Bascompte and Jordano 2007, 
Ings et al. 2009, Kéfi et al. 2012). There is, however, ample 
evidence that interaction networks vary in space and time 
(Laliberté and Tylianakis 2010, Poisot  et  al. 2012, 2016c, 
Schleuning et al. 2012, Albouy et al. 2014, Trøjelsgaard et al. 
2015), even though there is no common framework with 
which to generalize these results. Metacommunity theory 
provides explanations for variation in the distribution of the 
nodes (Gravel  et  al. 2011, Pillai  et  al. 2011, Cazelles  et  al. 
2015), but there are no such explanation to the variation of 
node and link occurrences. Consequently, we need theory to 
formalize these observations, as it is the only way towards 
fulfilling the goal of community ecology: providing cogent 

predictions about, and understanding of, the structure of 
ecological communities.

Given the historically different approaches to modelling 
the distributions of species vs. interactions, there is a need to 
bring the two together. Here, we offer an integrated approach 
to do so, adopting the view that community structure is best 
represented as a network of ecological interactions. Based on 
this idea, we propose a description of the ecological niche 
that integrates the effect of the environment on species dis-
tribution and on the ecological interactions among them. 
Building on this concept, we develop a quantitative theory 
to explain turnover of interactions in space and time. We 
first present the concept and then formalize it mathemati-
cally, using a probabilistic model to represent the sampling of 
the regional pool of interactions. At the level of species pairs, 
the statistical approach could be conceived as an interaction 
distribution model. At the community level, the approach 
provides a likelihood-based method to compare different 
hypotheses of network turnover. As an illustrative example, 
we apply this novel framework to a large dataset on host-
parasite interactions across Europe and find that two aspects 
of the environment (temperature and precipitation) exert a 
strong imprint on species co-occurrence, but not on species 
interactions. The network structure changes systematically 
across the latitudinal gradient, with a peak of connectance at 
intermediate latitudes.

The two dimensions of community structure

The problem of community assembly is often formulated as 
‘how are species sampled from a regional pool to constitute a 
local community’ (Götzenberger et al. 2012)? This question 
could be rewritten to address the problem of network assem-
bly, as ‘how do samples from a regional pool of interactions 
constitute a local interaction network?’ An illustration of this 
problem for a food web is provided in Fig. 1. The regional 
pool of interactions, the ‘metaweb’, represents potential inter-
actions among all species that could be found in a given area. 
In this particular case, there are 275 nodes, and 1173 links 
among the plants (52 nodes), herbivores (96 nodes), and 
parasitoids (127 nodes) from northern Europe. An instance 
of a local community is also illustrated, with 45 nodes and 93 
interactions. Only 55.0% of all potential interactions (plant-
herbivore or herbivore parasitoid combinations) are realized 
in this local network, revealing the stochastic nature of eco-
logical interactions. Our objective here is to provide theory 
to explain the sampling of the regional pool of interactions, 
along with a quantitative method to predict it. The problem 
could be formalized sequentially by understanding first why 
only a fraction of the species co-occur locally and second why 
these species do or do not interact.

There are multiple causes of spatial turnover of species 
co-occurrence. The first and most-studied driver is the effect 
of variation in the abiotic environment on species perfor-
mance. Combined with specific responses in demography, 
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it generates variation among sites by selecting the locally fit-
test species (Leibold et al. 2004). Stochasticity plays an addi-
tional role, either because colonization and extinction events 
(Hanski 1999) are inherently unpredictable or because 
strong non-linear feedbacks in community dynamics gen-
erate alternative transients and equilibria (Chase 2007, 
Vellend et al. 2014). Interaction themselves may impact co-
distribution, as hypothesized long ago by Diamond (1975). 
Analyses of community turnover are usually performed 
with data represented in a table with rows corresponding 
to sites (or measurements) and columns to species. Metrics 
of beta diversity quantify the variance of this community 
data (Legendre et al. 2005). Traditional approaches rely on 
measures of dissimilarity among communities, such as the 
Jaccard or Bray–Curtis indices. More recent approaches 
decompose total variation of the community data into spe-
cies and site contributions to beta diversity (Legendre and 
De Cáceres 2013), and further partition it into dissimilarity 
due to changes in species richness and dissimilarity due to 
actual species turnover (Baselga 2010). Even though all of 
these methods compare whole lists of species among sites or 
measurements, they remain fundamentally ‘species-based’. 
None of them explicitly considers variation of associations 
(i.e. of pairs or higher-order motifs, Stouffer  et  al. 2007). 
Some previous studies have considered how species distribu-
tion could be influenced by the joint effects of the abiotic and 
biotic environment (Stephens and Heau 2009, González-
Salazar et al. 2013, Cazelles et al. 2015, Ovaskainen et al. 
2017), here we inverse the problem and describe how the 
distribution of biotic interactions is influenced by species 
distribution and the environment.

We are now getting a better understanding of interaction 
turnover. As mentioned above, in the network approach to 
community structure, species and interactions are repre-
sented by nodes and links, respectively. Associations can also 
be represented by matrices in which entries represent the 
occurrence or intensity of interactions among species (rows 
and columns). Network complexity is then computed as the 

number of interactions (in the case of binary networks) or 
interaction diversity (in the case of quantitative networks, 
Bersier  et  al. (2002)). Variability in community structure 
consequently arises from the turnover of species composi-
tion, along with turnover of interactions among pairs of spe-
cies. The occurrence and intensity of interactions could vary 
because of the environment, species abundance, and higher-
order ecological interactions (Poisot  et  al. 2015). Variation 
in community composition can be independent of variation 
of ecological interactions, suggesting that species and inter-
action distribution may well respond to different drivers 
(Poisot et al. 2012).

The ‘niche’ is by far the dominant concept invoked to 
explain species distributions and community assembly, from 
the local to the global scale. Following Hutchinson (1957), 
the niche is viewed as the set of environmental conditions 
allowing a population to establish and persist (see also Holt 
2009). In other words, the niche is the location in that mul-
tidimensional space allowing a species to have a positive 
growth rate when rare (Godsoe  et  al. 2017). Community 
turnover arises as a result of successive replacement of spe-
cies along an environmental gradient, in agreement with 
the Gleasonian view of communities (Gleason 1926). The 
concept is straightforward to put into practice with species 
distribution models, as it maps naturally on available distri-
butional and environmental data. Consequently, a vast array 
of statistical tools have been developed to implement it (e.g. 
BIOMOD – Thuiller 2003, MaxEnt – Phillips et al. 2006). It 
is however much harder to account for ecological interactions 
within this approach (Townsend et al. 2011). As such, these 
interactions are often viewed as externalities constraining or 
expanding the range of environmental conditions required 
for a species to maintain a viable population (Pulliam 2000, 
Soberón 2007).

Interestingly, the food web literature also has its own 
‘niche model’ to position a species in a community (Williams 
and Martinez 2000), generalized later to other types of inter-
action networks (Eklöf et al. 2013). The niche of a species in 
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Willows

Gallers

Parasitoids and inquilines

Figure 1. Non-random sampling of the metaweb. Network assembly can be viewed as a sampling process of the regional pool of potential 
interactions. Species (indicated by colored nodes) are sampled first, and among the species found in the local network, only some interactions 
(indicated by blue links) occur. We characterize these sampling processes with the quantitative framework proposed in this paper. As a 
concrete illustration of metaweb sampling, we here show a local interaction network among Salix (bottom/green), gallers (center/blue), and 
parasitoids (top/red). The metaweb was constructed by aggregating interactions observed across 370 local networks. Nodes were distributed 
to minimize crossing of interactions.
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this context represents the multidimensional space of all of 
its interactions. Each species is characterized by a niche posi-
tion, an optimum and a range over three to five different axes 
(Williams and Martinez 2000, Eklöf et al. 2013). The niche 
model of food web structure and its variants have success-
fully explained the complexity of a variety of networks, from 
food webs to plant-pollinator systems (Allesina et al. 2008, 
Williams  et  al. 2010, Eklöf  et  al. 2013). This conceptual 
framework is, however, limited to local communities, and 
does not provide any explanation for the turnover of network 
structure along environmental gradients.

The integrated niche

Despite several attempts to update the concept of the 
ecological niche, ecologists have not moved far beyond 
the ‘n-dimensional hypervolume’ defined by Hutchinson 
(1957). Despite its intuitive interpretation and easy trans-
lation into species distribution models (Boulangeat  et  al. 
2012, Blonder et al. 2014), the concept has been frequently 
criticized (Hardin 1960, Peters 1991, Silvertown 2004), and 
several attempts have been made to expand and improve it 
(Pulliam 2000, Chase and Leibold 2003, Soberón 2007, 
Holt 2009, McInerny and Etienne 2012a).

Part of the problem surrounding the niche concept has 
been clarified with the distinction between Eltonian and 
Grinnellian definitions (Chase and Leibold 2003). The 
Grinnellian dimension of the niche is the set of abiotic envi-
ronmental conditions required for a species to maintain a 
population in a location. The Grinnellian niche is intuitive 
to apply, and constitutes the conceptual backbone of spe-
cies distribution models. The Eltonian niche, on the other 
hand, is ’the place of a species in its biotic environment, 
its relations to food and enemies’. While this aspect of the 
niche is well known by community ecologists, it is trickier to 
turn into predictive models. Nonetheless, the development 
of the niche model of food web structure (Williams and 
Martinez 2000) and its parameterization using functional 
traits (Gravel  et  al. 2013, Bartomeus  et  al. 2016) made it 
more operational.

These perspectives are rather orthogonal to each other, and 
this has resulted in considerable confusion in the literature 
(McInerny and Etienne 2012b). Chase and Leibold (2003) 
attempted to reconcile with the following definition: ‘[The 
niche is] the joint description of the environmental condi-
tions that allow a species to satisfy its minimum require-
ments so that the birth rate of a local population is equal 
to or greater than its death rate along with the set of per 
capita effects of that species on these environmental condi-
tions’. Their representation merges zero-net-growth isoclines 
delimiting the Grinnellian niche (‘when does the population 
persist?’) with impact vectors delimiting the Eltonian niche 
(‘what is the per-capita impact?’). While this representation 
has been very influential in local-scale community ecology 
(the resource-ratio theory of coexistence, Tilman 1982), 
it remains impractical at larger spatial scales because of the 

difficulties in measuring it. The absence of any mathematical 
representation of the niche that can be easily fit to ecological 
data may explain why biogeographers are still struggling to 
develop species distribution models that also consider ecolog-
ical interactions. Thus, a more integrative description of the 
niche will be key to understand spatial and temporal turnover 
in community structure.

We propose to integrate the two perspectives of the niche 
using a visual representation of both components (Fig. 2). 
The underlying rationale is that, in addition to the environ-
mental constraints on demographic performance (Fig. 2, top 
panel), any organism requires resources to meet its meta-
bolic demands and to sustain reproduction (Fig. 2, nodes 
in network of bottom panel). Abiotic environmental axes 
are any non-consumable factors affecting the demographic 

Figure 2. Visual representation of the integrated niche. In biogeog-
raphy, the niche is considered the set of environmental conditions 
where the intrinsic growth rate r is positive (Holt 2009). The hori-
zontal axis represents an environmental gradient impacting the 
growth of a focal species (red point). The location of each species 
(grey points) along this gradient represents their optimum, and the 
vertical dotted lines represent the limits of the Grinnellian niche of 
the focal species. In food web ecology, the Eltonian niche represents 
the location of a species in the food web, as determined by its niche 
position (n) and its niche optimum (c). The vertical axis represents 
a niche gradient, for example a trait such as body size. The location 
of each species along this gradient represents their niche position. 
The focal species will feed only on host/prey species occupying 
niche locations within a given interval around the optimum, repre-
sented by the horizontal lines. The integrated Grinnellian and 
Eltonian niche corresponds to the square in the middle where an 
interaction is possible owing to a match of traits and spatial distri-
bution. The central square represents the area where the joint prob-
ability of observing co-occurrence and interactions is not null.



405

performance of an organism. Alternatively, the resource axes 
are traits of the resources that allow interactions with the con-
sumers. By definition of what an interaction is, these axes 
also influence the growth rate. The niche can therefore be 
viewed as the set of abiotic environmental conditions (the 
Grinnellian component) along with the set of traits (the 
Eltonian component) that allow a population to establish 
and to grow at a location. This visual representation makes 
operational the theoretical interpretation of the niche and 
species ranges by Godsoe et al. (2017). Accordingly, each spe-
cies can be characterized by an optimal position along both 
the environmental (x-axis) and the trait (y-axis) plane. The 
integrated niche is then the hypervolume where interactions 
can occur and where a population has a positive growth rate.

This approach changes the representation of the niche, 
putting species distributions and ecological interactions 
into the same formalism. Moreover, it allows the limits of 
the niche axes to be independent of each other (as in the 
example in Fig. 2), or to interact. Some of these axes may 
not be independent. For instance, the optimal prey size for 
predatory fishes could decline with increasing temperature 
(Gibert and DeLong 2014), which would make diet bound-
aries functions of the environment. Alternatively, we could 
also consider that the growth rate of the predator changes 
with the size of its prey items, thereby altering the environ-
mental boundaries and changing the shape of the niche in 
the middle of this visual representation. It is also important 
that this conceptual representation depicts a reality that could 
be highly dimensional and sometimes difficult to represent 
statistically (Clark et al. 2007).

A probabilistic representation of interaction 
networks in space

We now formalize the integrated niche with a probabilistic 
approach to interactions and distributions. In particular, we 
seek to represent the probability that an interaction between 
species i and j occurs at location y. We define Lijy as a stochas-
tic process taking a value of 1 when an interaction occurs 
and a value of 0 when it does not, and focus on the probabil-
ity that this event occurs, P (Lijy = 1), over a given sampling 
interval and space. We note that the occurrence of an interac-
tion is dependent on the co-occurrence of species i and j. This 
argument might seem trivial at first, but the explicit consid-
eration of this condition in the probabilistic representation 
of ecological interactions will prove instrumental to under-
standing their variation. We note that this phenomenon we 
aim to describe differs fundamentally from the effect that 
interactions do have on co-occurrence (Cazelles et al. 2016). 
We similarly define Xiy as a stochastic process representing the 
occurrence of species i at location y, taking a value of 1 when 
the species occurs and a value of 0 when it is absent. The 
quantity we seek to understand is the probability of a joint 
event, conditional on the set of environmental conditions Ey:

P X X L Eiy jy ijy y, , |( )
Or simply said, the probability of observing both species  
i and j plus an interaction between i and j given the condi-
tions Ey at location y. This probability could be decomposed 
into two parts using the product rule of probabilities:

P X X L E P X X E P L X X Eiy jy ijy y iy jy y ijy iy jy y, , | , | | , ,( ) = ( ) ( )
The first term on the right-hand side of the equation is the 
probability of observing the two species co-occurring at loca-
tion y. It corresponds to the Grinnellian dimension of the 
niche. The second term represents the probability that an 
interaction occurs between species i and j, given that they are 
co-occurring. This predicate can be refined using information 
on trait distribution and trait matching rules . For brevity, we 
have here avoided specific references to traits and considered 
that the interactions are provided in the data. But one could 
develop the model further to integrate such traits, inspired by 
the framework developed by Gravel et al. (2016). They pro-
posed to represent the occurence of an interaction between 
species as a joint probability event P L T T Eij i j( , , | ), where Ti 
and Tj are trait vectors for species i and j respectively. In order 
to develop a trait-based representation of the spatial varia-
tion of interactions, one may thereafter consider how these 
traits are related to the environment and how they co-occur. 
Above, we referred to this entity as the ‘metaweb’ and note 
that it corresponds to the Eltonian dimension of the niche. 
Below, we will see how this formalism can be directly fit to 
empirical data, restricting ourselves to occurrences only and 
referring to the above citations for trait-matching and trait-
environment relationships. But before turning to an applica-
tion, we will discuss the interpretation of different variants of 
these two terms.

Variants of co-occurrence

There are several variants to the co-occurrence probability, 
representing different hypotheses concerning spatial varia-
tion in network structure (see the explicit formulations in 
Table 1). The simplest model relates the probability of co-
occurrence directly to the environment, P X X Eiy jy y( , | ).  
In this situation, there are no underlying assumptions about 
the ecological processes responsible for co-occurrence. 
Spatial associations between species could arise because 
interactions constrain distribution, where in such case the 
co-occurrence would be conditional on L, or, alternatively, 
because of environmental requirements shared between i 
and j (Pollock et al. 2014, Cazelles et al. 2016). In the for-
mer case, species are not independent of each other and the 
conditional occurrence must be accounted for explicitly, 
P X X E P X E X P X Eiy jy y iy y jy jy y( , | ) ( | , ) ( | )= . In the latter 
case, species are independent, and only the marginal occurrence 
must be accounted for, P X E P X E P X Eijy y iy y jy y( | ) ( | ) ( | )= .
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The co-occurrence probability itself could depend on eco-
logical interactions. This should be viewed as the realized 
component of the niche (i.e. the distribution when account-
ing for species interactions). Direct pairwise interactions such 
as competition, facilitation, and predation have long been 
studied for their impact on co-distribution (Diamond 1975, 
Connor and Simberloff 1979, Gotelli 2000). Second and 
higher-order interactions (e.g. trophic cascades) could also 
affect co-occurrence (Harris 2016, Staniczenko et al. 2017). 
Co-occurrence of multiple species embedded in ecological 
networks is a topic of its own, however, and is influenced by 
both network topology and species richness (Cazelles  et  al. 
2016). Not only direct interactions influence co-occurrence, 
but indirect interactions do as well (e.g. plant species sharing 
an herbivore, or herbivores sharing parasitoids, could repel 
each other in space, Holt and Lawton 1993). The impact of 
direct interactions and first-order indirect interactions on co-
occurrence tends to vanish with increasing species richness in 
the community (Cazelles et al. 2016). Further, co-occurrence 
is also influenced by the covariance of interacting species to 
an environmental gradient (Cazelles et al. 2015).

The interpretation that interactions may impact co-
occurrence, and that the realization of an interaction 
requires co-occurrence are not mutually exclusive. But since 
here the object is to describe the variation in the occurrence 
of interactions, which absolutely requires co-occurrence, 
we will give attention to this part of the problem. Relating 
co-occurrence to the structure of interaction networks is 
a problem on its own and we will therefore focus here on 
the variation of interactions and not on their distribution, 
and leave this specific issue for the Perspectives section and 
future research.

Variants of the metaweb

There are also variants of the metaweb. First, most docu-
mented metawebs have thus far considered ecological inter-
actions to be deterministic, rather than probabilistic (Havens 
1992, Wood  et  al. 2015). Species are assumed to interact 

whenever they are found together in a location, indepen-
dent of their local abundance and the environment. In other 
words, P L X Xijy iy jy( | , )= = =1 1 1 . This approach might be 
a reasonable approximation if the spatial or temporal scale 
of sampling and inference is so large that the probability 
of observing at least one interaction converges to unity. In 
this scenario, network variation arises solely from species 
distributions.

Second, ecological interactions could also vary with the 
environment, P L Eijy y( | ). Although it is rare to see a con-
ditional representation of pairwise ecological interactions, 
experimental studies have frequently revealed interactions to 
be sensitive to the environment. For instance, McKinnon et al. 
(2010) showed that predation risks of shorebirds vary at the 
continental scale, decreasing from the south to the north. 
It is also common to see increasing top-down control with 
temperature (Shurin  et  al. 2012, Gray  et  al. 2016). Effects 
of the environment on interactions (Gibert and DeLong 
2014) also propagate up the community and influence net-
work structure (Tylianakis et al. 2007, Petchey et al. 2010, 
Woodward et al. 2010).

Application: continental-scale variation of 
host-parasite community structure

We now turn to an illustration of our theory with the analy-
sis of an empirical dataset of host-parasite networks sampled 
throughout the south-north environmental gradient in con-
tinental Europe (Kopelke et al. 2017). Our objective here is 
to illustrate potential applications of the approach outlined 
above, rather than to specifically describe the biogeography of 
this particular community. The focal system consists of local 
food webs of willows (genus Salix), their galling insects, and 
the natural enemies (parasitoids and inquilines) of gallers. 
We ask: 1) how much does network structure vary across 
the gradient, and 2) what is the primary driver of network 
turnover across the gradient?

Table 1. Example of data used to perform the analysis. Traditional species distribution models represent the occurrence of single species as 
a function of the environment, with models such as Xi ~Temp performed one species after the other. Some also tried to represent both the 
abiotic and biotic niche, with models such as Xi ~Temp + Xj (González-Salazar et al. 2013), while the new joint species distribution models 
(Ovaskainen et al. 2017) consider the entire community at once (X ~Temp) and aims at representing co-distibution (Xij). Here is the focus is 
on the occurrence of interactions, Lij. The full model (see model 3, Tables 1–2) considers the result of two submodels, one representing the 
occurrence of interactions given co-occurrence, Lij ~Temp (evaluated only on the subset of data where Xij = 1), and the other representing 
the co-occurrence, Xij ~Temp.

Location Spi Spj Xi Xj Xij Lij
Av. temp

Kühkopf Phyllocolpa prussica Chrysocharis elongata 1 1 1 1 8.25
Kühkopf Phyllocolpa leucapsis Chrysocharis elongata 0 1 0 0 8.25
Ötztal Phyllocolpa prussica Chrysocharis elongata 0 0 0 0 –1.50
Ötztal Phyllocolpa leucapsis Chrysocharis elongata 0 0 0 0 –1.50
Kilpisjärvi Phyllocolpa prussica Chrysocharis elongata 0 1 0 0 –1.92
Kilpisjärvi Phyllocolpa leucapsis Chrysocharis elongata 0 1 0 0 –1.92
Wiistensachsen Phyllocolpa prussica Chrysocharis elongata 1 1 1 0 5.58
Wiist ensachsen Phyllocolpa leucapsis Chrysocharis elongata 1 1 1 1 5.58
Steinamoen Phyllocolpa prussica Chrysocharis elongata 0 1 0 0 3.17
Steiriarrioeri Phyllocolpa leucapsis Chrysocharis elongata 0 1 0 0 3.17
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Data

Communities of willows, gallers, and parasitoids are species-
rich and widely distributed, with pronounced variation 
in community composition across space. The genus Salix 
includes over 400 species, most of which are shrubs or small 
trees (Argus 1997), and is common in moist habitats across 
the Northern Hemisphere (Skvortsov 1999). Willows sup-
port a highly diverse community of herbivorous insects, with 
one of the main herbivore groups being gall-inducing saw-
flies (Hymenoptera: Tenthredinidae: Nematinae: Euurina 
(Kopelke 1999). Gall formation is induced by sawfly females 
during oviposition, and includes marked manipulation of 
host-plant chemistry by the galler (Nyman and Julkunen-
Tiitto 2000). The enemy community of the gallers includes 
nearly 100 species belonging to 17 insect families of four 
orders (Kopelke 2003). These encompass two main types: 
inquiline larvae (Coleoptera, Lepidoptera, Diptera, and 
Hymenoptera) feed primarily on gall tissue, but typically 
kill the galler larva in the process, while parasitoid larvae 
(representing many families in Hymenoptera) kill the galler 
larvae by direct feeding (Kopelke 2003).

Local realizations of the willow-galler-parasitoid network 
were reconstructed from community samples collected 
between 1982 and 2010. During this period, willow galls 
were collected at 370 sites across Central and Northern 
Europe. In total, 52, 96 and 127 Salix, galler and parasit-
oid and inquiline taxa were distinguished, respectively. The 
strength of this dataset is that observations were observed 
in situ, rather than inferred from expert knowledge or other 
sources of information, thereby allowing the analysis of their 
spatial variation. The drawback is that, because many species 
are rare, some of the pairs of species may have been observed 
co-occurring only a few times, or never. As a consequence, 
despite the extent of the sampling, there is significant uncer-
tainty in the quantification of some of the links. The above 
described methodology explicitly aims at describing this 
uncertainty, and research should be done to develop methods 
to reduce it (see conclusion).

The current study represents the first analysis of the 
full data set from a spatial perspective. Full details about 
data collection and species identification are provided in 
(Kopelke  et  al. 2017). Annual mean temperature and pre-
cipitation were obtained from WorldClim using the R pack-
age dismo (Hijmans 2015) and GPS coordinates of the 
sampling locations. While other covariates could have also 
been considered to represent the high dimensionality of the 
niche, these two variables are likely representative of the most 
important axes of European climate, and are also more easily 
interpretable than reduced variables obtained, for example, 
by principal component analysis.

Analysis

Computing the probability of observing an interaction 
involves fitting a set of binomial models and collecting 
their estimated probabilities. For the sake of illustration, we 

considered generalized linear models – although more flex-
ible fitting algorithms (e.g. GAM or Random Forest) could 
equally well be used, as long as the algorithm can estimate 
the probability for each observation. The data consist of a 
simple (albeit large and sparse) table with the observation of 
each species, Xiy and Xjy, their co-occurrence, Xijy, the observa-
tion of an interaction Lijy, and environmental co-variates Ey 
(Table 1). Thus, there is one row per pair of species per site. 
We considered that an absence of a record of an interaction 
between co-occurring species at a site means a true absence 
(see below for a discussion on this issue).

We compared three models for the co-occurrence 
probability. The first one directly represents the co-
occurrence probability conditional on the local environment, 
P X X Eiy jy y( , | )  (models are listed in Table 1, 2). Hence, this 
model makes no assumption about the mechanisms driving 
co-occurrence for any given environment, and instead uses the 
information directly available in the data. It thereby indirectly 
accounts for the effect of interactions on co-occurrence, if 
there are any. The second model considers independent occur-
rence of species. In this case, we independently fit P X Eiy y( | )  
and P X Ejy y( | ), and we then take their product to derive the 
probability of co-occurrence. This model should be viewed 
as a null hypothesis with respect to the first model, since a 
comparison between them will reveal if there is significant 
spatial association of the two species beyond a joint response 
to the shared environment (Cazelles et al. 2016). Finally, the 
third model assumes that the probability of co-occurrence is 
independent of the environment and thus constant through-
out the landscape. In other words, P X Xiy jy( , ), is obtained 
by simply counting the number of observed co-occurrences 
divided by the total number of observations. Thus, the com-
parison between the first and third model allows us to test the 
hypothesis that co-occurrence is conditional on the environ-
ment. Whenever the environment was included as a covariate 
in the GLM, we considered a second-order polynomial term 
for both temperature and precipitation in order to account 
for optima in environmental conditions. There are conse-
quently five parameters for the first model when fitting a 
given pair of species, 10 parameters for the second, and only 
one for the third model.

Table 2. Summary of model comparison for the interaction between 
the leaf folder Phyllocolpa prussica and the parasitoid Chrysocharis 
elongata. Note that E is a short notation including both temperature 
and precipitation.

# Metaweb model
Co-occurrence 

model LL npars AIC

1 P(Lijy) P X X Eiy jy y( , | ) –71.1 6 154.2
2 P L X Xijy iy jy( | , ) P X X Eiy jy y( , | ) –65.7 6 143.4
3 P L X X Eijy iy jy y( | , , ) P X X Eiy jy y( , | ) –65.6 10 151.3
4 P L X X Eijy iy jy y( | , , ) P X Xiy jy( , ) –84.5 6 183
5 P L X X Eijy iy jy y( | , , ) P X P Xiy jy( ) ( ) –80.7 7 173.4
6 P L X X Eijy iy jy y( | , , ) P X E P X Eiy y jy y( | ) ( | ) –68.8 15 167.6
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Following the same logic, we compared three models 
of the interaction probability. The first model conditions 
the interaction probability on the local environmental 
variables, P L X X Eijy iy jy y( | , , ). Consequently, the model 
was fit to the subset of the data where the two species 
co-occur. The second model fits the interaction probabil-
ity independently of the local environmental variables, 
P L X Xijy iy jy( | , ). It corresponds to the number of times the 
two species were observed to interact when co-occurring, 
divided by the number of times that they co-occurred. 
The third model is an extreme case evaluated only to test 
the hypothesis that if two species are found to interact at 
least once, then they should interact whenever they co- 
occur, P L X Xijy iy jy( | , ) = 1. While not necessarily realistic, 
this model tests an assumption commonly invoked in the 
representation of local networks from the knowledge of 
a deterministic metaweb. It represents potential interac-
tions, rather than realized ones. There are consequently 
five parameters for the first model, a single parameter for 
the second model and no parameter to evaluate for the 
third model (where the interaction probability is fixed by 
the hypothesis).

We fitted the different models to each pair of species and 
recorded the predicted probabilities. The joint probability 
P L X Xijy iy jy( , , )  was then computed from eq. 2, and the 
likelihood of each observation Dijy given the model θ was 
computed as L D P L X Xijy ij iy jy( | ) ( , , )θ =  if an interaction 
was observed, and as L D P L X Xijy ijy iy jy( | ) ( , , )q = −1  if no 
interaction was observed. The log-likelihood was summed 
over the entire dataset to compare the different models by 
AIC. We therefore evaluated the likelihood of all local net-
works, given the model. Not surprisingly, there was a very 
large number of species pairs for which this model could not 
be computed, as they simply never co-occurred. For these 
pairs, we have no information of the interaction probability, 
and they were consequently removed from the analysis. The 
log-likelihood reported across the entire dataset was there-
fore summed over all pairs of species observed to co-occur 
at least once. Interactions between the first (Salix) and sec-
ond (gallers) trophic layers and those between the second 
and third (parasitoids) were considered separately. Finally, 
we used the full model (in which both co-occurrence and 
the interaction are conditional on the environment) to 
interpolate species distributions and interaction probabili-
ties across the entire European continent. We reconstructed 
the expected network for each location in a 1 × 1 km grid 
and computed the probabilistic connectance following 
Poisot et al. (2016b).

Data availability

All of the data are openly available in the database mangal 
(Poisot et al. 2016a) and all R scripts for running the analy-
ses, are provided in the github repository < https://github.
com/DominiqueGravel/ms_probaweb >.

Results

Despite the extensive sampling, many pairs of species were 
observed to co-occur only a few times. This made it difficult 
to evaluate interaction probabilities with any reasonable con-
fidence. Thus, we start with an example of a single pair of 
species selected because of its high number of co-occurrences 
(Nij = 38): the leaf folder Phyllocolpa prussica and the parasi-
doid Chrysocharis elongata. These two fairly abundant species 
were observed Ni = 49 and Nj = 121 times, respectively, across 
the 370 sites, and they were found to interact with a marginal 
probability P Lij( ) .= 0 55 , which means they interacted at 21 
different locations. Here, a comparison of model fit (Table 2) 
reveals that conditioning the interaction probability on local 
environmental conditions adds no explanatory power beyond 
a model assuming the same probability of interaction any-
where in space (model 2 vs model 3). Moreover, when the 
two species co-occur, the occurrence of the interaction 
was insensitive to the environment (model 2 vs model 3). 
Alternatively, climatic variables significantly impacted co-
occurrence (model 3 vs model 4). The independent model 
performed worse than the non-random co-occurrence model 
(model 3 vs model 6). The full model revealed that the great-
est interaction probability occurred at intermediate tempera-
ture and precipitation, simply because this is where the two 
species most frequently co-occur (Fig. 3). The probabili-
ties of co-occurrence and interaction can be represented in 
space, where we find that the highest interaction probability 
occurred in central Europe (Fig. 4).

We evaluated each model for all pairs of species in order 
to better understand the large-scale drivers of network turn-
over. The results were highly consistent among trophic levels 
(Salix-gallers and gallers- parasitoids; Table 3), despite large 
variability in the fit of the models to the different pairs of 
species. This variability was particularly important for the 
models of interactions given co-occurrence. Across all pairs 
of species, the conditional representation of interactions per-
formed (model 2) better than the marginal one (model 1); 
that is, interactions did not occur systematically whenever 
the two species were found co-occurring. Hence, in addi-
tion to species turnover, the stochastic nature of interactions 
contributes to network variability. In total, we recorded 1173 
pairs of interactions, only 290 of which occurred more than 
five times. Out of these 290 interactions, 143 were systemati-
cally detected whenever the two species co-occurred. In the 
instances when species co-occurred, the two environmental 
variables considered proved relatively poor predictors of their 
interactions (model 2 vs model 3). Not surprisingly, for both 
types of interactions (Salix-galler and galler-parasitoid), the 
log-likelihood increased when the environment was consid-
ered. However, the extra number of parameters exceeded the 
gain in log-likelihood and inflated AIC. Therefore, the most 
parsimonious model excluded the effect of the environment. 
On the basis of log-likelihood only, co-occurrence was non-
independent for both Salix-galler and galler-parasitoid inter-
actions. Thus, according to AIC, the best model was the one 
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of non-random co-occurrence (model 3 vs model 6) for both 
types of interactions.

Once we had selected the best model based on AIC (model 3, 
Table 2), we used it to reconstruct the expected species richness, 
along with the most likely network for each location. Using 
this approach, we mapped the expected distribution of network 
properties across Europe (Fig. 5). For simplicity, we chose to 
consider connectance as our descriptor of network configura-
tion, as this metric can be easily computed from probabilistic 
networks (Poisot et al. 2016b) and is also a good proxy for many 
other network properties (Poisot and Gravel 2014). Overall, 
we found a peak in Salix, gallers and parasitoid diversity in 
northern Europe. The expected number of interactions roughly 
followed the distribution of species richness, but accumulated 
at a rate different from species numbers. Connectance likewise 
peaked in northern Europe (Fig. 5).

Interpretation

We have proposed that the representation of community 
structure and its variation in space is best captured by the 

formalism of ecological networks, as both the distribution 
of species and their interspecific interactions can then be 
accounted for. We consequently revised the niche concept 
in order to integrate its abiotic and biotic components. This 
integrated niche was represented visually with an ordination 
of species into an environmental space and a trait space. The 
fundamental niche of a species is represented as the set of 
environmental conditions and resources that allow a species 
to establish in a location, thereby integrating the Eltonian 
and the Grinnellian components of the niche. We then trans-
lated the concept mathematically by investigating the proba-
bility of the joint occurrences of species and their interaction, 
which should be interpreted as an interaction distribution 
model. We used this approach to characterize the turnover 
of the structure of ecological interactions in a species-rich 
tri-trophic network across Western Europe, finding that the 
primary driver of network variation is the turnover in species 
composition.

Applying the framework to our large data set on host-
parasite interactions across Europe revealed key features in 
the interaction between Salix taxa, their herbivores, and the 

Figure 3. Probabilistic representation of the interaction probability between a leaf folder (Phyllocolpa prussica) and a parasitoid (Chrysocharis 
elongata) across gradients of annual average temperature and annual precipitation. The colour gradient represents the probability of observ-
ing the event, from 0 (white) to 1 (black). The representation is based on predictions from model 3 (see Table 1). In the left panel, open 
circles represent the absence of both species, whereas closed circles represent co-occurrence and plus signs the occurrence of only one of the 
two species. In the other two panels, open circles represent co-occurrence but an absence of interaction and closed circles the occurrence of 
an interaction.

Figure 4. Probabilistic representation of the interaction probability between a leaf folder (Phyllocolpa prussica) and a parasitoid (Chrysocharis 
elongata) across Europe. Climate data are extracted from WorldClim over a 1 km × 1 km grid and predictions made according to the model 
illustrated at Fig. 3. Colour gradient ranges from low values (dark blue) to high values (yellow).
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natural enemies of these herbivores. Consistent with a gen-
eral increase in the diversity of Salix towards boreal areas 
(Cronk et al. 2015), overall species richness of the networks 
increased towards the north. The distribution of Salix spe-
cies richness largely matched those of gallers and parasit-
oids. These observations within Europe are also matched 

by the ones found at a global scale for Salix (Argus 1997, 
Cronk et al. 2015, Wu et al. 2015) and sawflies (Kouki et al. 
1994, Kouki 1999). Species richness in a common group of 
parasitic wasps, the Ichneumonidae, was originally presumed 
to show a similar ‘reversed latitudinal gradient’, but this 
observation has been recently challenged by findings of rather 

Table 3. Summary of model comparison for the interaction across all pairs of Salix, gallers and parasitoids.

Interaction # Metaweb model Co-occurrence model LL npars AIC

Salix-Galler 1 P(Lijy) P X X Eiy jy y( , | ) –6022.1 7548 27140.3
2 P L X Xijy iy jy( | , ) P X X Eiy jy y( , | ) –5547.9 7548 26191.8
3 P L X X Eijy iy jy y( | , , ) P X X Eiy jy y( , | ) –5364.0 12580 35888.0
4 P L X X Eijy iy jy y( | , , ) P X Xiy jy( , ) –5998.4 8806 30287.2
5 P L X X Eijy iy jy y( | , , ) P X P Xiy jy( ) ( ) –6636.1 7548 27092.7
6 P L X X Eijy iy jy y( | , , ) P X E P X Eiy y jy y( | ) ( | ) –6002.9 18870 49745.7

Galler-Parasitoid 1 P(Lijy) P X X Eiy jy y( , | ) –22068.1 19206 82548.2
2 P L X Xijy iy jy( | , ) P X X Eiy jy y( , | ) –19504.8 19206 77421.6
3 P L X X Eijy iy jy y( | , , ) P X X Eiy jy y( , | ) –20217.0 32010 104454.1
4 P L X X Eijy iy jy y( | , , ) P X Xiy jy( , ) –19591.3 22407 77594.5
5 P L X X Eijy iy jy y( | , , ) P X P Xiy jy( ) ( ) –22491.5 19206 89796.9
6 P L X X Eijy iy jy y( | , , ) P X E P X Eiy y jy y( | ) ( | ) –18936.9 48015 133903.7

Figure 5. Mapping the distribution of species richness, the number of links and connectance across Europe. The representation is based on 
predictions from model 3 (see Table 2) using climate data extracted from WorldClim over a 1 km × 1 km grid. Species richness is obtained 
by summation of individual occurrence probabilities, and link density by summation of interaction probabilities. Color gradient ranges 
from low values (dark blue) to high values (yellow).
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high ichneumonid diversity in the tropics (Veijalainen et al. 
2013). Nevertheless, ichneumonid subfamilies specifically 
associated with sawflies (Ctenopelmatinae, Tryphoninae) are 
clearly less diverse in the south.

Exactly what processes are responsible for the distribu-
tion of species richness at different trophic levels is yet to 
be established (but see Roininen et  al. 2005, Nyman et  al. 
2010, Leppänen et  al. 2014), but as a net outcome of dif-
ferent latitudinal trends across trophic levels, the distribu-
tion of co-occurrence and therefore of potential interactions 
differed between the first and second layers of feeding links. 
The correlation between expected Salix and galler richness 
was 0.73, while it was 0.58 between gallers and their para-
sitoids. Therefore, the ratio of herbivores to Salix species is 
essentially constant across Europe, whereas each herbivore 
species is potentially attacked by a richer enemy community 
at higher latitudes. Consequently, overall connectance peaks 
in northern Europe (Fig. 5).

In terms of species interacting with each other, our analysis 
suggests that the environment leaves a detectable imprint on 
species co-occurrence, but only a slight mark on the occurrence 
of realized links among species in a specific place: the prob-
ability of finding a given combination of species at a higher 
and a lower trophic level at the same site was clearly affected 
by the environment, whereas the probability of observing an 
interaction between the two was, given co-occurrence, not 
significantly so. The interactions were highly uncertain, as 
only few pairs of species were systematically interacting when 
co-occurring but most not. This applies to the example spe-
cies Phyllocolpa prussica and Chrysocharis elongata (Fig. 3, 4), 
but also to all species pairs more generally. For the example 
species pair, the full model revealed that the joint probability 
event (interaction and co-occurrence) peaks at intermediate 
temperature and precipitation, simply because this is where 
the two species co-occur most often. This does not imply that 
species will always interact when they meet – although this 
is a basic assumption in most documented metawebs to date 
(Havens 1992, Wood et al. 2015). Rather, an interaction is 
better represented as a stochastic process whose probability 
is also influenced by the probability with which species co-
occur. What we cannot reliably know is how this stochasticity 
splits into different sources of uncertainty – i.e., the extent 
to which a species at the higher trophic level runs into a spe-
cies at the lower level co-occurring at the site, the extent to 
which this interaction is detected by an observer collecting a 
finite sample, or simply the uncertainty arising from incom-
plete description of a highly dimensional niche. Future work 
will be required to document the relative importance of these 
sources of uncertainty in the occurrence of interactions.

Perspectives

Evidence that the structure of ecological networks does vary 
across habitats (Tylianakis et al. 2007), over environmental 
gradients (Lurgi  et  al. 2012) and in time (Simanonok and 
Burkle 2014) is accumulating rapidly. It is not clear, however, 

to what extent the turnover of network structure is driven 
by a systematic change in species composition or of pairwise 
interactions (Poisot et al. 2012, 2015). Our model compari-
son of host-parasite interactions revealed that most of the 
turnover is driven by species-specific responses to the envi-
ronment, impacting species richness, and that co-occurrence 
was mostly independent. Further, the occurrence of interac-
tions among host and parasite is highly stochastic even when 
both are present, and not predictable by the variables consid-
ered by us. We know that interactions vary with the environ-
ment in other systems, for instance, herbivory (Shurin et al. 
2012, Baskett et al. 2018) and predation (McKinnon et al. 
2010, Legagneux et al. 2014) are often found to increase with 
temperature, resulting in spatial variation of trophic cascades 
(Gray  et  al. 2016). What remains unclear, however, is the 
extent to which such variation is driven by a turnover of spe-
cies composition along gradients, or a turnover of the interac-
tions. Here we found that interactions vary substantially but 
non-predictably along the annual temperature and the pre-
cipitation gradient. The lack of detectable signal may be due 
to our choice of covariates. Indeed, a previous study focusing 
on a subset of the system studied here identified habitat char-
acteristics as the primary drivers of interactions (Nyman et al. 
2015). New investigations with other systems will thus be 
required to challenge this result. Under all circumstances, 
documenting the relationship between the environment and 
the occurrence of interactions at continental scales is critical 
for understanding how large-scale variation of trophic regu-
lation influences community dynamics and ecosystem func-
tioning (Harfoot et al. 2014).

The framework we provide complements methods to 
compute network beta-diversity presented by Poisot  et  al. 
(2012) and Poisot et al. (2018). The total network turnover is 
partitioned into interaction turnover and species turnover – 
which in our approach would correspond to the three terms 
of eq. 2, respectively. Importantly, one could easily derive 
the different β of Poisot et al. (2012) using the fitted prob-
abilities. For instance, for a pair of species i and j and sites x 
and y, the expectation for the fraction a for the interactions 
would be P L X X P L X Xijx ix ijx( | , ) ( | , )ijy iy ijy . The same could 
be computed for fractions b, and therefore the expected beta-
diversity for an entire network could be recomputed this way. 
The novel feature of the approach presented here is then that 
the different contributions to network turnover can be attrib-
uted to different hypotheses (as performed here), in order to 
evaluate for instance the role of environmental heterogeneity 
or species co-distribution on network turnover.

We restricted our analysis to the effect of co-occurrence on 
ecological interactions, neglecting the inverse of the problem. 
We did not investigate in depth the drivers of co-occurrence 
and simply took it for granted from the data. Co-occurrence 
was indeed different from the expectation of independent 
species distributions. It thus begs the question of whether, 
once environmental effects on species-specific distribution 
have been accounted for, interactions come with significant 
effects on co-occurrence? We could rephrase this problem 
by asking whether the fundamental niche differs from the 
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realized niche, and how this applies to our framework. For 
example, we have considered above simply the co-occurrence 
probability, P X X Eiy jy y( , | ), which could be expanded as 
P X X E P X Eiy jy y jy y( | , ) ( | ). After some re-arrangement of 
eq. 2, the marginal occurrence probability, P X Ejy y( | ), 
could be considered as a species distribution model taking 
into account the interaction between these species (in the 
same spirit as done by González-Salazar  et  al. 2013). This 
derivation would however critically depend on a strong  
a priori expectation of the conditional probability of observ-
ing a species given the distribution of the other species. This 
assumption seems reasonable for some situations, such as 
a parasitoid species that requires a host to develop. On the 
other hand, Cazelles (2016) found that the strength of this 
association is often rather weak if not inexistant (for instance, 
with the example pair presented in Table 1). The lack of an 
association could simply arise when the parasitoid is general-
ist enough that it is not constrained to track the distribution 
of any single/given host (Cazelles et al. 2015).

The approach we presented could easily be expanded to 
account for traits, in order to derive a complete and more 
mechanistic representation of the niche. In this context, 
both the Eltonian and Grinnellian dimensions of the niche 
could be represented. As mentioned earlier, Gravel  et  al. 
(2016) proposed to represent the occurrence of interac-
tions based on some trait-matching rules (given by a func-
tion of the type P L T T E( ) | , ,ijy iy jy y ) and the co-distribution 
of traits (corresponding to P T T E( , | )iy jy y ). The key insight 
from the formalism proposed by Gravel et al. (2016) is that 
the co-distribution of traits will impact variation in network 
structure. As a result, it was found that network properties 
often co-vary with functional structure and functional diver-
sity (Laigle  et  al. 2018). The next step in the development 
of this framework will be to develop the models for the co-
distribution of traits, for instance following Ovaskainen et al. 
(2017). This may facilitate its accessibility and application, 
since the basic unit of analysis is no longer the species, 
but rather a combination of traits, thereby facilitating the 
statistical analysis by sharing information among species.

At present, there is only indirect support for the hypoth-
esis that interacting species are conditionally distributed, 
but this possibility should be the topic of theoretical 
investigation with dynamical metacommunity models 
(Cazelles  et  al. 2015) and empirical hypothesis testing. 
The impact of ecological interactions on the distribution 
of co-occurrence has been the topic of many publications 
since Diamond (1975) seminal study on competition and 
‘checkerboard’ distribution, but pairwise approaches have 
only recently received attention (Veech 2013). Whether 
two interacting species are more closely associated in space 
remains unclear, since most approaches based on null 
models consider community-level metrics (Gotelli 2000), 
such as the C-score, thereby making it hard to evaluate if 
specific interactions do indeed affect co-occurrence. The 
expansion of the framework we describe to account for the 
difference between the realized and the fundamental niche 

will therefore require further investigation of the impact of 
interactions on co-occurrence.

Ecological networks are known to be extremely sparse, i.e. 
they have far more absences than presences of interactions. 
Absences of interactions, however, can come from different 
sources. The fact that unequal sampling at the local scale can 
affect our understanding of network structure is well docu-
mented (Martinez et al. 1999). In a spatial context, however, 
some interactions may be undocumented simply because 
the species involved have never been observed to co-occur. 
Although these cases are reported as a lack of interactions, 
in actuality we cannot make any reliable inference from 
them: since the species have never been observed together, 
it remains possible that they would interact if they did. A 
fundamentally different category of absences of interactions 
are then those reported after multiple observations of species 
co-occurence. Thus, to gain confidence that the probability 
of an interaction is low, extensive sampling (that is, several 
records of co-occurence) is needed. Generally, our confidence 
that the interaction is indeed impossible will increase with 
the number of observations of the species pair. Seeing that 
this is essentially a Bernoulli process (the probability that 
the species will interact given their presence), the breadth of 
the confidence interval is expected to saturate after a fixed 
number of observations, which can be set as a threshold 
above which a species pair has finally been observed “often 
enough”. For instance, if two species are observed together 
at k = 10 locations but are never found interacting (n = 0), 
this means that the maximum likelihood estimate for the 
probability of this binomial distribution is p = 0. Using the 
Clopper-Pearson method to compute the 95% confidence 
interval, we find that the real value of the probability of the 
interaction occuring is somewhere between 0 and 0.31. This 
interval is rather large, indicating that a significant amount 
of sampling is required to have credible interaction networks. 
Fortunately, there are Bayesian methods which could be used 
to complement available information and reduce this uncer-
tainty (Cirtwill et al. 2018).

Conclusion

Our representation of spatial variation of community struc-
ture offers a new approach for the study of the biogeography 
of ecological networks. We see the following key challenges 
and opportunities ahead in this exciting area of research:

1. New generation of network data. Investigating spa-
tial variation of network structure will require high quality 
and highly replicated network data. We have investigated 
one the most comprehensive spatial network datasets 
we are aware of and nonetheless found immense gaps of 
knowledge in its resolution. Species richness accumulates 
much faster than observations of ecological interactions 
(Poisot et al. 2012). Each pair of species must be observed 
several times in order to obtain reliable estimates of their 
interaction probability.
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2. Estimation of the reliability of interactions. We need 
quantitative tools to estimate the confidence intervals around 
inferred interaction probabilities, as well as estimators of the 
frequency of false absences. Bayesian methods are promising 
to that end because we could use information on the target 
species (e.g. if they are known as specialists or generalists) to 
provide prior estimates of the interaction probability.

3. From interaction probabilities to a distribution of 
network properties. Metrics are available to analyse the struc-
ture of probabilistic networks (Poisot  et  al. 2016b). These 
metrics are useful as first approximation, but they assume 
independence among interactions. This might not be the 
case in nature because of the role of co-occurrence and shared 
environmental requirements. We also need to better under-
stand the distribution of network properties arising from 
probabilistic interactions.

4. Investigation of the environmental-dependence of eco-
logical interactions. There is evidence that interactions can 
vary in space, but this problem has not been investigated in 
a systematic fashion. The paucity of currently available data 
precludes an extensive analysis of this question at present.

5. Effects of ecological interactions on co-occurrence. We 
have intentionally omitted the feedback of ecological inter-
actions on co-occurrence in this framework. As abundance 
can impact the occurrence of interactions, and, conversely 
since interactions impact abundance (Canard et al. 2014), we 
could reasonably expect that interactions will also influence 
co-occurrence. Theory in this regard does exist for simple 
three-species modules (Cazelles  et  al. 2015), but its exten-
sion to entire co-occurrence networks will prove critical in 
the future, especially given the interest in using co-occurrence 
to infer ecological interactions (Morales-Castilla et al. 2015, 
Morueta-Holme et al. 2016).
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