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Abstract

Motivated by both analytical tractability and empirical practicality, community ecologists have
long treated the species pair as the fundamental unit of study. This notwithstanding, the challenge
of understanding more complex systems has repeatedly generated interest in the role of so-called
higher-order interactions (HOIs) imposed by species beyond the focal pair. Here we argue that
HOIs – defined as non-additive effects of density on per capita growth – are best interpreted as
emergent properties of phenomenological models (e.g. Lotka–Volterra competition) rather than as
distinct ‘ecological processes’ in their own right. Using simulations of consumer-resource models,
we explore the mechanisms and system properties that give rise to HOIs in observational data.
We demonstrate that HOIs emerge under all but the most restrictive of assumptions, and that
incorporating non-additivity into phenomenological models improves the quantitative and qualita-
tive accuracy of model predictions. Notably, we also observe that HOIs derive primarily from
mechanisms and system properties that apply equally to single-species or pairwise systems as they
do to more diverse communities. Consequently, there exists a strong mandate for further recogni-
tion of non-additive effects in both theoretical and empirical research.
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INTRODUCTION

For the last � 100 years (a conservative estimate for the age of
ecology as a unique discipline), population and community
ecologists have treated the ‘species pair’ as the fundamental unit
of study (e.g. Gause 1934; MacArthur 1970; Chesson 2000).
Indeed, multiple paradigmatic concepts, including the competi-
tive exclusion principle, niche partitioning and alternative stable
states, are grounded in the analysis of simple mathematical
models for two interacting species (Gause 1934; MacArthur &
Levins 1967; Vandermeer 1973; May 1977). In doing so, the
implicit and explicit reductionist hope has always been that we
can build up to a more complete understanding of more com-
plex systems if we can understand the forces pushing and pull-
ing between two species. To date, however, it still remains
rather unclear under what circumstances it is reasonable to
scale up from two species systems to more ‘realistic’ ecological
communities, comprised of multiple species interacting at differ-
ent intensities across multiple temporal and spatial scales.
Growing awareness of this gulf between theory and reality

has increased interest in the role of indirect effects, which
encompass a broad spectrum of species interactions impacted
by intermediary species (i.e. one that does not belong to a
focal pair) (Wootton 1993; Billick & Case 1994). Among
these, there is particular interest in the role of the so-called
higher-order interactions (HOIs) in mediating the dynamics of
multi-species systems (Bairey et al. 2016; Grilli et al. 2017;
Levine et al. 2017; Mayfield & Stouffer 2017; Saavedra et al.
2017; Terry et al. 2017; for earlier discussion, see Hutchinson

1947; Vandermeer 1969; Neill 1974; Levine 1976; Case & Ben-
der 1981; Pomerantz 1981; Abrams 1983; Wootton 1993, Bil-
lick & Case 1994). In particular, the inclusion of HOIs in
competition models has recently been shown to effectively
explain the stability of high-dimensional systems (Bairey et al.
2016; Grilli et al. 2017), as well as provide a parsimonious
predictor of population dynamics (Mayfield & Stouffer 2017).
According to most verbal definitions, HOIs are one of many

possible indirect effects that can emerge in multispecies sys-
tems (Billick & Case 1994). In competitive systems, which are
the focus of the current work, the reference to ‘higher order’
more precisely stems from the explicit, mathematical role
HOIs play in extending standard phenomenological popula-
tion-dynamic models. Under the simplest form of Lotka–Vol-
terra competition, the per capita growth of each species is a
linear function of its own density and those of its competitors;
that is, the intra- and inter-specific effects vary additively with
the densities of all co-occurring species. In this purely additive
world, where the per capita interaction strengths between all
pairs of species is unaffected by their own densities and/or
that of other species, it is possible to predict the dynamics of
multispecies systems simply by linking all pairwise dynamics
together by way of an interaction chain (Wootton 1993; Bil-
lick & Case 1994; Levine et al. 2017). Unfortunately, we know
from both first principles and observational evidence that the
natural world rarely operates in an additive fashion (Strogatz
2014), and the effect one species has on another will likely
vary depending on the identities and densities of co-occurring
species (Abrams 1980a, 1983).
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From a conventional multispecies (> 2) perspective, it fol-
lows that HOIs reflect the need to adjust the strength of phe-
nomenological (e.g. Lotka–Volterra) pairwise interaction
coefficients in the presence of more than two competitors
through the inclusion of higher-order terms. Mathematically,
however, there is nothing to prevent the inclusion of higher-
order terms in less diverse models. For example, a higher-
order logistic-growth equation for a single species could take
the form: dN

dt ¼ rNð1 � aN � bN2Þ where the new b term
captures the second-order, non-additive effects of intra-speci-
fic density on the per capita growth rate (see Box 1 for an
overview of incorporating higher-order terms into competi-
tive models). Notably, Lotka (1924) himself conceived the
basic growth equations as the first terms in a Taylor approx-
imation to a more complex model, and thus only being a
reasonable representation of community dynamics around
equilibria. MacArthur (1970) echoed this view in an
influential paper providing a mechanistic derivation of

Lotka–Volterra competition. Indeed, much of the early dis-
cussion in the literature on HOIs overlaps closely with dis-
cussion of the constancy of the competition coefficients in
the standard two species Lotka–Volterra model (Hutchinson
1947; Neill 1974; Pomerantz 1981; Abrams 1983; Billick &
Case 1994). More recently, Mayfield & Stouffer (2017)
defined HOIs as the suite of non-additive effects that emerge
when interaction strengths vary with the density of both het-
erospecifics and conspecifics.
Irrespective of the number of species required to form an

HOI, it is useful to recognise HOIs for what they are: emer-
gent properties of the phenomenological models routinely
used to study competition. While it is tempting to consider
HOIs as ecological processes in their own right, in reality they
are only a phenomenological representation of underlying
non-additive processes. Consequently, fitting higher-order
models to data can tell us something about the where, when,
and what of HOIs, but they tell us little about the how and
why. This is especially true given that any number of system
properties and processes can result in non-additive dynamics.
In order to understand the mechanistic basis of HOIs, we are
better served by turning to more mechanistic models of com-
petition in which non-additive dynamics emerge implicitly
(e.g. through saturating growth functions in consumer-
resource models), without the need to invoke higher-order
terms (Abrams 1980a, 1983; Levine et al. 2017). Taking a
mechanistic approach can enable us to tease apart and

Box 1. Higher-order Lotka–Volterra competition

Following Mayfield & Stouffer (2017), we define higher-
order interactions broadly as non-additive density-depen-
dent effects on per capita fitness. Consider a standard
Lotka–Volterra model,

dNi

dt
¼ riNi 1�

Xn
j¼1

aijNj

 !
ð11Þ

where ri is the per capita intrinsic rate of increase of the
focal species, and the competition coefficients, aij, result in
a realised rate of increase that is a linear, additive function
of intra- and inter-specific density.
The inherent additive effect of density on per capita

growth rate in the standard model is illustrated for a two-
species system (blue line) in Fig. 1a, and for a three-species
system (blue plane) in Fig. 1b. In order to incorporate
intra-specific HOIs, we can extend the standard model
through the inclusion of higher-order quadratic terms, such
that,

dNi

dt
¼ riNi 1�

Xn
j¼1

aijNj �
Xn
j¼1

bijjN
2
j

 !
ð12Þ

where bijj capture the cumulative impacts of intra-specific
interactions on the focal species (illustrated by the green
curve in Fig. 1a). Note, the identity of j may or may not
be the same as the focal species.
Alternatively, to incorporate inter-specific HOIs, the

model can take the form,

dNi

dt
¼ riNi 1�

Xn
j¼1

aijNj �
Xn
j¼1

Xn
k¼jþ1

bijkNjNk

 !
ð13Þ

where bijk capture the cumulative impacts of inter-specific
interactions on the focal species (illustrated by the beige
surface in Fig. 1b). Here again, the identity of j may or
may not be the same as the focal species, but the identity

of k strictly excludes the focal species. Finally, a fully speci-
fied higher-order Lotka–Volterra model (including both
intra- and inter-specific quadratic terms) would take the
form,

dNi

dt
¼ riNi 1�

Xn
j¼1

aijNj �
Xn
j¼1

Xn
k¼jþ1

bijkNjNk �
Xn
j¼1

bijjN
2
j

 !

ð14Þ

dN
dt

dN
dt

(a) (b)

Figure 1 Illustrating higher-order interactions as non-additive density-

dependant per capita growth functions. In (a), per capita growth of a

focal species is an additive (blue) or non-additive (green) function of

its own density or that of a competitor. In (b), per capita growth of a

focal species is an additive (blue) or non-additive (beige) function of

the densities of itself and another competitor or of two different

competitors.

Box 1 (Continued)
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compare the causal factors that lead to the emergent non-
additivity we characterise as HOIs.
Here, we combine mechanistic and phenomenological mod-

elling approaches to disentangle the mechanistic drivers of
HOIs that emerge through resource competition. We begin by
laying the necessary theoretical foundations for a mechanistic
understanding of HOIs, before simulating data from a suite of
general consumer-resource models to assess the frequency and
magnitude of emergent non-additivity arising under different
assumptions about the dynamics of resource competition. The
results of this analysis show that HOIs are the rule rather
than the exception. We then evaluate the analytical implica-
tions of HOIs for species coexistence and community stability.
Finally, we conclude with an overview of the significance of
acknowledging non-additivity for our current and future
understanding of community dynamics.

MECHANISING HIGHER-ORDER INTERACTIONS

Although the line between phenomenological and mechanis-
tic models is not always clear cut (Bolker 2008), from the
perspective of resource competition the distinction is fairly
transparent. We can distinguish a phenomenological model,
such as Lotka–Volterra, as one in which per capita growth
is modelled as a direct function of conspecific and
heterospecific densities. The implication is that the product
of competitor densities and their accompanying proportion-
ality constants provides a suitable proxy for the underlying
competitive process. We might assume these interactions
arise via resource competition (MacArthur 1970), but we
don’t know what resources they are competing for or how
each species utilises them. Despite these abstractions, one of
the advantages of a phenomenological approach is that we
don’t need to have this latter information if we want to
infer model parameters empirically, either by experiments or
field observations. Furthermore, the dimensionality of the
system of equations is only as large as the number of com-
petitors; that is, two competitors lead to two equations. In
contrast, per capita growth in a mechanistic model of
resource competition is modelled as an explicit function of
resource availability. Here, intra- and inter-specific feedbacks
on growth rates arise solely through the depletion of shared
resources. As such, mechanistic models require one to keep
track of more variables. In addition to an equation for each
consumer, an additional equation is required for each
resource. Moreover, to parametrise a mechanistic model, we
need to know which are the key limiting resources in the
system.
Within the above verbal description, we already see some

terminological ambiguity in moving between phenomenologi-
cal and mechanistic perspectives. The alpha coefficients in a
Lotka–Volterra model represent direct pairwise effects, with
indirect effects emerging either through a non-focal species
having a density mediated domino-effect on the dynamics of a
focal pair via an interaction chain (e.g. an intransitive loop),
or through a non-focal species modifying the per capita level
interaction strength between a focal pair (HOI, sensu Woot-
ton 1993; Levine et al. 2017). In contrast, in a mechanistic
model, all interactions are indirect, irrespective of whether the

community comprises a single or a thousand consumers. At
the same time, from a continuous-time mechanistic perspec-
tive, there is no clear means of distinguishing between interac-
tion chains and HOIs since the former is only an extreme case
of negligible non-additivity (we expand on this point in the
discussion). As a result, we believe the question we should
instead be asking is under what conditions do we expect to
observe non-negligible non-additivity?
There already exists a considerable body of literature inves-

tigating the additivity of competition coefficients on analytical
and empirical grounds in both pairwise and multi-species sys-
tems (Hutchinson 1947; Neill 1974; Abrams 1980a; Pomerantz
1981; Abrams 1983; Billick & Case 1994). The empirical evi-
dence for non-constant competition coefficients is undeniable
(Levine et al. 2017), but perhaps more compelling is the ana-
lytical work that has been carried out to assess the tendency
for non-additivity from first principles. As a start, we can
learn a lot from the necessary constraints MacArthur (1970)
was forced to impose in order to translate resource competi-
tion into a Lotka–Volterra form. Chief amongst there were (i)
logistic resource supply, (ii) linear consumer functional
responses, and (iii) a time-scale separation between consumer
dynamics and resource dynamics based on the assumption
that resource dynamics are significantly faster than consumer
dynamics. A number of researchers have since shown that
relaxing these assumptions will typically result in non-additive
per capita growth functions, with Peter Abrams’ contributions
on this topic being particularly noteworthy (Abrams 1980a,
1983; Abrams et al. 2008).
Analytical work indicates that non-additivity can emerge

under a broad spectrum of conditions. What remains to be
seen is to what extent the inclusion of higher-order terms in
phenomenological models improves predictive accuracy, and/
or is critical to mapping the qualitative end-points of a com-
munity (e.g. correctly identifying coexistence vs. exclusion).
One way we can investigate this is by statistically fitting stan-
dard and higher-order Lotka–Volterra models to data gener-
ated from simulations of mechanistic consumer-resource
models, where we have full knowledge of underlying pro-
cesses. This allows us to evaluate both the robustness of static
fits to the observed data as well as the relative fidelity of
parameterised phenomenological models to the dynamics of
the original data generating mechanistic model (see Fig. 2).
What makes a simulation approach additionally attractive is
that it is representative of the process taken by empiricists in
parametrising phenomenological models from experimental or
observational data, albeit with one key contrast in that it is
perfectly deterministic.

TESTING FOR HIGHER-ORDER INTERACTIONS IN A

PERFECT WORLD

Model formulation

To investigate the prevalence and significance of HOIs arising
from resource competition, we first generated synthetic ‘ob-
served’ data from simulations of a suite of basic consumer-
resource models (see Fig. 2 for an illustration of the process).
All models took the general form,
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dNi

dt
¼ NiðliðR1;R2; . . .Þ �mÞ ð1Þ

dRj

dt
¼ WjðRjÞ �

Xn
i¼1

QijlijðRjÞNi ð2Þ

where Ni is the population density of consumer i, Rj is the
density/concentration of resource j, liðRjÞ is the per capita
consumer functional response of consumer i, m is the per

capita mortality rate, WjðRjÞ is the resource supply func-
tion, and Qij is the resource quota of consumer i on
resource j.
From this general form, different model scenarios are dis-

tinguished by: (i) the form of the consumer functional
response; (ii) the form of the resource supply function; (iii)
the class of resource; and (iv) the number of consumers/re-
sources.

ti
ff

ti
ti
ti

ti
ti

ti
ti

ff
ti

ti

Figure 2 Illustrating a simulation approach to testing HOIs. (1) Linear functional responses for three consumers competing for three resources. (2) A

single iteration of the data generation step via density perturbations. (3) The fitted higher-order per capita growth rate surface for purple as function

of yellow and turquoise. In the illustrated fit, purple is treated as being at negligible density and so the plane tracks the upper most quantiles of

purple’s potential per capita growth rate. The vertical depth of the point data is indicative of the effect of purple’s own population density on its

growth rate, in combination with its two competitors. (4) Re-simulated trajectories of the three competitors from a fully specified higher-order model

(solid lines), against the corresponding trajectories from the original mechanistic model (partially transparent lines).
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We allow the consumer growth function to take one of two
forms: (i) linear,

lijðRjÞ ¼ aijRj ð3Þ
where aij is a constant of proportionality, or (ii) nonlinear
(Monod),

lijðRjÞ ¼ lmaxij

Rj

kij þ Rj
ð4Þ

where lmaxij is the maximum growth rate and kij is the half
saturation constant for consumer i on resource j.
We also explore two options for the resource supply func-

tion. Specifically, we either assume that the resources are bio-
logical and grow logistically,

WjðRjÞ ¼ rjRj 1� Rj

Kj

� �
ð5Þ

where rj is the resource intrinsic rate of increase and Kj is the
resource carrying capacity; or we assume abiotic resources
that are supplied to the systems at a fixed concentration and
rate (as in a chemostat),

WjðRjÞ ¼ dðSj � RjÞ ð6Þ
where d represents the flux of resources into and out of the
system.
In the case of multiple resources, we then further distinguish

between whether each resource is essential to consumer
growth following Leibig’s law of the minimum, in which case,

liðR1;R2; . . .;RnÞ ¼ minðliðR1Þ; liðR2Þ; . . .; liðRnÞÞ; ð7Þ
or the resources are substitutable such that:

liðR1;R2; . . .;RnÞ ¼ liðR1Þ þ liðR2Þ þ � � � þ liðRnÞ ð8Þ
Finally, we varied the number of consumers in the system

from one to three inclusively, with an equivalent number of
resources in each case. For 2 consumer functional
responses 9 2 resource supply functions 9 2 resource
classes 9 3 levels of consumer/resource richness, this resulted
in a full complement of 20 model formulations of resource
competition (note for a single consumer utilising a single
resource there is no distinction in resource class).

Model parametrisation

For each model formulation, we generated 100 random
parametrisations for the consumer functional response(s). In
the linear case, for each consumer’s response to each resource,
a was sampled 100 times from a uniform distribution with a
lower limit of 0.015 and an upper limit of 0.1. In the nonlin-
ear case, for each consumer’s response to each resource, k was
sampled 100 times from a uniform distribution with a lower
limit of 0.1 and an upper limit of 5, while lmax was held fixed
at 0.1. Resource quota, Q, was parametrised in proportion
(19, 109, 1009 or 10009) to the a and k parameters of the
consumer functional responses across all models, with slight
distinctions in the allocation procedure depending on the
functional response, resource type and the number of con-
sumers/resources. The simplest case was for a single con-
sumer, where Q was simply given by a or k. For two

consumers and two resources. In the linear case, the resource
quota Q was given a value proportional to a of the corre-
sponding resource if resources were substitutable, or the alter-
native resource if resources were essential; in the nonlinear
case, the resource quota Q was given a value proportional to
k of the corresponding resource if resources were essential, or
the alternative resource if resources were substitutable.
Finally, for three consumers and three resources, the relative
size of each consumer’s Q for each resource was given by a
random shuffling of each consumer’s a or k values.
To ensure that growth rates would be tightly linked to

changes in density, we parametrised resource dynamics to be
at least an order of magnitude faster than consumer dynam-
ics. This assumption is equivalent to the time-scale separation
commonly applied in analytical treatments of consumer-
resource dynamics (MacArthur 1970; Chesson 1990, see
Appendix S2). For logistically growing resources, this is done
by increasing the magnitude of the resource logistic growth
parameter, r. To achieve the same effect for constantly sup-
plied resources, it was necessary to decouple consumer mortal-
ity, m, from the inflow/outflow rate, d, as would be the case
in a chemostat if a filter on the output slowed the washout
rate (Smith & Waltman 1995) or, in a less artificial scenario,
if consumers are motile and therefore able to actively avoid
being washed out (e.g. fish in a stream).

Data generation

To generate idealised observational data, we performed a ser-
ies of repeated simulations for each of 100 parametrisations of
the 20 different model scenarios. After a short burn-in period
of 1000 time-steps (10 000 numerical iterations, equivalent to
� 15–100 generations) that allowed for the system to
approach its stable equilibrium, consumer densities were per-
turbed up and down over � 80–400 density combinations up
to and including each consumer’s carrying capacity in
monoculture (see Appendix S1 in Supporting Information for
a detailed description of how perturbation densities were cal-
culated).
We then measured the per capita growth rate for each con-

sumer given its own density and the density of its competitors.
We obtained an ‘instantaneous’ measure of this per capita
growth by taking the first derivative of a spline model fit for
the natural log of density as a function of time (across one
time-step [10 numerical iterations] beginning one timestep
after densities were perturbed). All simulations were run with
the LSODA solver using the deSolve package v1.20 (Soetaert
et al. 2010) in R v3.4.2.

Phenomenological (a and b) parameter inference

With the data-generated for each of the valid parametrisations
(max 100) of each model, we fit four Lotka–Volterra-type
models of varying complexity: (i) standard Lotka–Volterra
model; (ii) Lotka–Volterra model with inter-specific HOIs; (iii)
Lotka–Volterra model with intra-specific HOIs; and (iv)
Lotka–Volterra model with both inter and intra-specific HOIs
(see Box 1). Owing to occasional, randomly-drawn parameter
combinations that resulted in unsolvable numerical solutions,
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note that the number of valid parametrisations for six model
scenarios involving logistically growing resources was < 100
(see simulation tallies in Table S1 in the Supporting Informa-
tion). For each valid parametrisation, we fit the model to the
full data and in select cases (multiple consumers competing
for logistically growing resources) also a subset of the data
excluding perturbations densities that yielded ‘spurious’ non-
linearities due to minimum per capita growth rates being
bounded from below by the mortality rate. We refer to these
as spurious because they arise from the ecologically unrealistic
simultaneous perturbation of multiple competitors close to
their respective monoculture carrying capacities. In the case of
multiple consumers competing for logistically growing
resources, we present the results for the sub-setted data in the
main text and for the full data in the supplementary material
(see Figs S1–S2 in Supporting Information). All models were
fit as standard polynomial linear regressions in R v3.4.2.

Goodness of fit: static training and dynamic testing

In order to evaluate the explanatory power of the phe-
nomenological model fits, we obtained the R2 for each of the
valid parametrisations of each scenario. Note that the poten-
tial to generate infinite data via simulation precludes the use
of classical significance testing (White et al. 2014) or even
information-criteria-based model selection (McElreath 2015).
The superficial limitation of using R2 is that it will always
increase with additional parameters. As such, there is a risk of
concluding that a more complex model is superior even when
overfit to the observed data. At the same time, we know a pri-
ori that all four models are strictly speaking misspecified, in
that they do not represent the true data-generating process.
However, because we can reproduce the data generating-pro-
cess exactly with the mechanistic models, we can compare the
predictive accuracy of each Lotka–Volterra model dynami-
cally against the original mechanistic version. This two-step
procedure can be viewed as analogous to the use of a training
dataset and a test dataset in cross validation; an overfit
model, with a larger statically fit R2, will produce larger errors
in dynamic simulations when contrasted against a better fit
model with a smaller statically fit R2 (the potential of a fully
specified HOI model to overfit the observed data is illustrated
in Fig. S4 in the Supporting Information for an example
model scenario).
To evaluate the accuracy of each model we obtained a

dynamic measure of McFadden’s pseudo-R2:

R2 ¼ 1� lnLðMpÞ
lnLðMnullÞ ð9Þ

where the numerator in the fraction is the log-likelihood of a
phenomenological model and the denominator is the log-like-
lihood of the relevant null model. To quantify the log-likeli-
hoods, we simulated all five models (1 mechanistic + 4
phenomenological) using the perturbation densities imple-
mented in the data generation step as the initial values. Each
simulation was run for 20 time-steps (200 numerical iterations,
equivalent to � 0.3–2 generations) with the absolute average
error calculated as the average difference across the time-series
between the density of each consumer in each of the four

phenomenological models relative to their density in the con-
sumer-resource model, and then finally averaged over con-
sumers. As the null model, we held the initial values fixed and
subtracted them from the recorded state of the consumer-
resource model over the same 20 time-steps. Because some
combinations of phenomenological parameters (particularly in
the case of quadratic terms) exhibit pathological behaviour
where population size blow-up to infinity, simulations in
which average differences exceeded 100 000 individuals were
excluded.
We calculated the log-likelihood for each of the 100

parametrisations of each phenomenological model and the
null model as:

LðMÞ ¼ mln
Xm
i¼1

jðyi � xiÞj
 !

=m

 !
ð10Þ

where yi (abundance in mechanistic model) and xi (abundance
in phenomenological model) is the average over the 20 time-
steps of each simulation run of the mechanistic model and the
phenomenological/null models respectively, and m is the num-
ber of simulations per parametrisation (i.e. different starting
values) (Mangan et al. 2017). Note that rather than stochastic
error, here we are treating the functional misspecification of
the model as the error on the basis that we know with cer-
tainty that the phenomenological models do not represent the
original data-generating process. The final output of the anal-
ysis of short-term dynamics is a distribution of 100 pseudo-R2

representing each phenomenological model’s correspondence
to each of the 20 data-generating consumer-resource model
scenarios. Note that the absolute value of the pseudo-R2 val-
ues is partially a function of the dynamic speed of the model,
and therefore contingent on the number of time-steps evalu-
ated. Because our interest here is on the relative performance
of the different phenomenological models under a given mech-
anistic scenario, we therefore present the results as the differ-
ence in goodness of fit (DR2) between each HOI model and
the reference standard Lotka–Volterra model. For consis-
tency, we do the same for the static fits, but provide the abso-
lute R2 of the static fit of the standard model as a reference in
each figure.
In Table S1 of the Supporting Information, we provide a

breakdown of the following for each model scenario: the
number of valid mechanistic parametrisations; the average
number of original perturbations; and the average number of
perturbations after excluding those in which all consumers
exhibited minimum bounded growth rates due to population
perturbations well above equilibrium; and the average number
of simulations excluded due to blown-up population sizes.

Supplementary analyses

In addition to the core analyses, we conducted a number of
additional simulations aimed at testing the sensitivity and
robustness of the data generation and fitting procedure. This
included: (i) rerunning all simulations (incl. data generation)
while constraining perturbation densities to be below half of
each species’ carrying capacity to evaluate the effect of a
reduced perturbation range on emergent non-additivity; (ii)
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rerunning all simulations to evaluate the effect of a longer
post-perturbation sampling interval (100 time steps) on emer-
gent non-additivity (quantifying per capita growth rate as
log½Ntþ1 � Nt�=Dt); and (iii) comparing logistic growth
parameters obtained via simulation with those derived analyti-
cally using the approach described in Appendix S2 of the Sup-
porting Information for the only model for which we know a
priori should recapitulate logistic population growth (i.e. a
single consumer with a linear functional response to a logisti-
cally growing resource).

Results

One consumer and one resource
The training and test data DR2s for a single consumer utilising a
single logistically growing resource are shown in Fig. 3. When
the consumer has a linear functional response to resource avail-
ability, the standard version of Lotka–Volterra competition
performs as well as the HOI model including quadratic intra-
specific terms for both the static training data and the dynamic
test data, with both being indistinguishable from unity. Though
not particularly illuminating, this numerical result is reassur-
ingly consistent with MacArthur’s analytical derivation of
resource competition in Lotka–Volterra form (MacArthur
1970; Abrams 1980a; an analytical derivation for this model is
provided in Appendix S2). As proof of the robustness of our

fitting procedure, we are also able to show that the parameters
obtained via simulation of this model recover the analytically
derived parameters to within three significant figures (Fig. S3).
We nevertheless found that a shift to nonlinear consumer func-
tional responses already led to the model including quadratic
intra-specific terms performing better on both the training and
test data. This simulation result can be derived analytically and
is consistent with several analytical studies (Abrams 1980a,
1983; Abrams et al. 2008) demonstrating that the phenomeno-
logical Lotka–Volterra competition coefficients will typically be
a non-constant function of population densities when consumer
functional responses are nonlinear (see Appendix S2 in the Sup-
porting Information).
For a single species utilising a single resource under con-

stant supply, the most striking result is that the relative per-
formance of the higher-order model is greatest (DR2 � 0:24)
when the consumer functional response is linear (Fig. 3,
Appendix S2). Intuitively, we might assume this arises from
some dynamic peculiar to chemostat-type resource supply, but
the reality is that any deviation from logistic resource supply
will result in non-additive dynamics (O’Dwyer 2018). Several
previous studies have already shown analytically that non-
logistic resource supply will generate non-constant competi-
tion coefficients, even if the consumer functional responses are
linear (Abrams 1980a, 1983). As recently put succinctly by
O’Dwyer (2018), ‘to obtain something as familiar as logistic
growth . . . we must assume logistic growth ‘all the way
down’. The somewhat counter-intuitive observation here is
that the effect of introducing a saturating consumer functional
response is to increase the relative performance of the stan-
dard Lotka–Volterra model. The underlying explanation is
that, under constant resource supply, the functional relation-
ship between per capita growth rates and consumer densities
is concave-up, leading to positive quadratic HOIs. In contrast,
the effect of a saturating consumer functional response (i.e.
per capita growth rate as a function of resource concentration)
is to cause the functional relationship between per capita
growth rates and consumer densities to be concave-down,
leading to negative quadratic HOIs. This is because at low
consumer population density, resources are at high density,
and therefore a small increase in population density depletes
resource concentrations in the saturating region of the con-
sumer functional response, where the effect on per capita
growth rate is minimal. Once densities become larger, the rate
at which per capita growth rate declines as resources become
more scarce increases, hence giving rise to a concave-down
phenomenological functional response (i.e. per capita growth
rate as a function of density). In combination, these two
sources of non-additivity work to partially cancel each other
out (see eqns 5, 9 and 10 of Appendix S2) and ultimately
reduce the difference in the performance between the standard
model and the higher-order model.

Multiple consumers and multiple essential resources
Doubling the number of consumers and resources has little
impact on the relative performance of the standard and
higher-order models when the consumers have linear func-
tional responses and the resources are essential and grow logis-
tically (Fig. 4). In contrast, the introduction of nonlinear

Figure 3 Difference in goodness of fit (DR2) for HOI models relative to a

standard Lotka–Volterra model fitted to data generated from a consumer-

resource model for a single consumer. DR2 for the training data (static

fits) are indicated with circles; DR2 for the test data (dynamic fits) are

indicated with diamonds. The number in bottom left of each panel gives

the R2 for the standard Lotka–Volterra model (static fit). Number of

parameters in each model: ‘alpha’ = 2; ‘alpha + beta (intra)’ = 3. All

error bars denote standard errors.

© 2019 John Wiley & Sons Ltd/CNRS

Ideas and Perspective Mechanising higher-order interactions 429



functional responses results in a significant improvement in the
model including both inter- and intra-specific quadratic terms
relative to the other three models, as is most pronounced in
the test data in the lower left panel of Fig. 4. With the addition
of a third consumer and third logistically growing essential
resource, the fully specified higher-order model exhibits a
marked improvement over the other models in both the train-
ing and test data and in spite of consumers having linear func-
tional responses. This is likely attributable to abrupt switches
in the resources each consumer is most limited by, coupled
with the tendency for at least one resource to be driven to scar-
city when multiple resources are available, leading to abrupt
changes in interaction strengths (Abrams 1980a,b). Although
resource exclusion can arise when two consumers compete for
two logistically growing resources, it should emerge much

more frequently in the case of three or more resources
(Abrams 1998). When consumer functional responses are non-
linear, the fully specified model again shows substantially
stronger performance for three-consumer systems.
Paralleling the pattern seen for a single consumer (Fig. 3),

the switch to constant resource supply results in a marked
drop in performance in the standard Lotka–Volterra model;
this is even true in two consumer systems with linear func-
tional responses (Fig. 5). Notably, however, the jump to three
consumers and three resources is not characterised by the
same upward trend in the relative performance of the fully
specified HOI model exhibited by logistically growing essential
resources. We suspect this can be at least partly attributed to
the inability of consumers to temporarily drive resources to
extinction in a system with constant resource supply.

Figure 4 Difference in goodness of fit (DR2) for HOI models relative to a

standard Lotka–Volterra model fitted to data generated from a consumer-

resource model for two and three consumers utilising an equivalent

number of logistically growing, essential resources. DR2 for the training

data (static fits) are indicated with circles; DR2 for the test data (dynamic

fits) are indicated with diamonds. The number in bottom left of each

panel gives the R2 for the standard Lotka–Volterra model (static fit).

Number of parameters in each model (2 consumers/3 consumers):

‘alpha’ = 6/12; ‘alpha + beta (inter)’ = 8/21; ‘alpha + beta (intra)’ = 10/

21; ‘alpha + beta (inter & intra)’ = 12/30. All error bars denote standard

errors.

Figure 5 Difference in goodness of fit (DR2) for HOI models relative to a

standard Lotka–Volterra model fitted to data generated from a consumer-

resource model for two and three consumers utilising an equivalent

number of essential resources under constant supply. DR2 for the training

data (static fits) are indicated with circles; DR2 for the test data (dynamic

fits) are indicated with diamonds. The number in bottom left of each

panel gives the R2 for the standard Lotka–Volterra model (static fit).

Number of parameters in each model (2 consumers/3 consumers):

‘alpha’ = 6/12; ‘alpha + beta (inter)’ = 8/21; ‘alpha + beta (intra)’ = 10/

21; ‘alpha + beta (inter & intra)’ = 12/30. All error bars denote standard

errors.
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Multiple consumers and multiple substitutable resources
The switch to substitutable resources makes little substantive
difference to the above observations (Figs 6 and 7). The only
somewhat surprising exception is that the fully specified model
doesn’t see the same marked increase in performance from
two to three consumer systems under logistic resource growth
as it did for essential resources (Fig. 4). This is notable
because resource extinction can still arise at, or below, equilib-
rium population sizes, when resources are substitutable (as-
suming logistic growth). It is nevertheless possible that
quadratic functions provide a poor fit to the types of non-line-
arities generated from resource extinction (a point we will
expand upon in the discussion). Furthermore, unlike for
essential resources, changes in the ratio of available resources

do not change the identity of the most limiting resource,
which likely contributes to the abrupt shifts seen for logisti-
cally growing essential resources (Letten et al. 2017).
For both single and multiple consumers and resources, the

results obtained when the time scale over which we estimated
per capita growth rates was increased by two orders of magni-
tude were broadly consistent with those described above (Figs
S5–S9); this indicates that the data-generation procedure is
robust even to a non-instantaneous measure of per capita
growth rate. In contrast, the results obtained when the range
of perturbation densities was narrowed to below each species
carrying capacities exhibited a marked increase in the relative
performance of the standard Lotka–Volterra model (Figs
S10–S14).

Figure 6 Difference in goodness of fit (DR2) for HOI models relative to a

standard Lotka–Volterra model fitted to data generated from a consumer-

resource model for two and three consumers utilising an equivalent

number of logistically growing, substitutable resources. DR2 for the

training data (static fits) are indicated with circles; DR2 for the test data

(dynamic fits) are indicated with diamonds. The number in bottom left of

each panel gives the R2 for the standard Lotka–Volterra model (static fit).

Number of parameters in each model (2 consumers/3 consumers):

‘alpha’ = 6/12; ‘alpha + beta (inter)’ = 8/21; ‘alpha + beta (intra)’ = 10/

21; ‘alpha + beta (inter & intra)’ = 12/30. All error bars denote standard

errors.

Figure 7 Difference in goodness of fit (DR2) for HOI models relative to a

standard Lotka–Volterra model fitted to data generated from a consumer-

resource model for two and three consumers utilising an equivalent

number of substitutable resources under constant supply. DR2 for the

training data (static fits) are indicated with circles; DR2 for the test data

(dynamic fits) are indicated with diamonds. The number in bottom left of

each panel gives the R2 for the standard Lotka–Volterra model (static fit).

Number of parameters in each model (2 consumers/3 consumers):

‘alpha’ = 6/12; ‘alpha + beta (inter)’ = 8/21; ‘alpha + beta (intra)’ = 10/

21; ‘alpha + beta (inter & intra)’ = 12/30. All error bars denote standard

errors.
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COEXISTENCE IN A NON-ADDITIVE WORLD

In the preceding analysis, we evaluated the accuracy of different
higher-order models solely on the basis of their short-term accu-
racy across a broad range of initial population sizes. Neverthe-
less, it is possible for a model to be a closer approximation to
the data-generating process in the short-term but be a weak pre-
dictor of its long-run state, and vice versa. In order to evaluate
long-term model accuracy and the implications of HOIs for
analyses of coexistence and stability, we ran additional simula-
tions for 3000 time-steps of each phenomenological model using
the end state (after 1500 time-steps) of the corresponding con-
sumer-resource model as the initial state values. We then evalu-
ated the qualitative accuracy (correct or incorrect) of each
model in matching the end state (i.e. the identities of coexisting
and excluded consumers) of the data generating model after the
same number of time steps.
The comparative accuracy of the standard Lotka–Volterra

model and the fully specified HOI model in qualitatively
matching the end-state of each simulation is shown in Fig. 8.
In each of the 16 simulation scenarios, the HOI model per-
formed as well (4/16) or better (12/16) than the standard
model. The baseline accuracy for the standard LV model was
nevertheless already between 96–100% for two consumers and
between 87–100% for three consumers. It must be noted that
Fig. 8 only presents the results for those simulations in which
the populations didn’t blow-up for one or both model forms.
Compared to the short-term simulations (which were termi-
nated after 20 time-steps), a larger number of simulations
exhibited pathological behaviour when allowed to proceed
indefinitely. The average number of simulations in which pop-
ulation sizes blew up was just two for the standard model

compared to nine for the fully specified HOI model. In the
case of the intermediate intra-specific HOI model (not shown
in Fig. 8) an average of 31 out of a maximum of 100 simula-
tions resulted in blown up population sizes. This shouldn’t be
surprising given the quadratic form of the HOI model, but it
does highlight some of the potential subtleties encountered
when fitting higher-order models.
Perhaps a more pressing limitation to the incorporation of

HOIs into our understanding of the dynamics of multi-species
systems is the derivation of intuitive analytical criteria for pre-
dicting coexistence and partitioning apart the various contrib-
utory factors (Levine et al. 2017; Letten et al. 2018). For two
species systems, we frequently rely on the mutual invasibility
criterion, which states that two species can coexist if both can
invade from low density when the other is at its monoculture
carrying capacity. This is satisfied under pairwise Lotka–Vol-
terra competition when the intra-specific competition coeffi-
cients are greater than the inter-specific coefficients for both
species. There also exist convenient, competition-coefficient-
based formulae for partitioning apart the contributions of fit-
ness and niche differences to coexistence (Chesson 2013).
Unfortunately, the mutual invasibility criterion is no longer
foolproof for non-additive models or in systems with three or
more species (Gilpin 1975; Stouffer et al. 2018); and even in
the absence of HOIs, pairwise coexistence is not a reliable
indicator of multispecies coexistence (Barab�as et al. 2016;
Levine et al. 2017; Saavedra et al. 2017). Recently, Saavedra
et al. (2017) developed a structural approach for evaluating
coexistence in multi-species systems that critically bypasses the
dependency on invasibility criteria. The method for now
remains constrained to standard Lotka–Volterra models para-
metrised in the form of an interaction chain (but see Cenci &
Saavedra 2018), but in the context of the current work it pro-
vides a useful tool to illustrate the (in)fidelity of Lotka–Vol-
terra models to their mechanistic counterparts and the
potential importance of HOIs in explaining coexistence.
Even without HOIs, there are many ways in which the

dynamics of three species can depart from those expected
based on pairwise dynamics. A textbook scenario for illustrat-
ing the novelty of multi-species systems takes the form of a
game of rock-paper-scissors, or what is more technically
referred to as an intransitive loop (Kerr et al. 2002; Stouffer
et al. 2018): species A excludes B, B excludes C, and C
excludes A. Even though no single species pair can coexist,
the triplet nevertheless persists when together. Parametrising a
pairwise Lotka–Volterra model to exhibit intransitive dynam-
ics is as simple as introducing a set of pairwise competition
coefficients corresponding to a third competitor, such that
each species excludes and is excluded by one other species.
Importantly, there needn’t be any non-additivity for this
mechanism to stabilize coexistence.
Under a consumer-resource model, intransitivity can emerge

when three consumers compete for three essential resources
and each has the largest impact on the resource it is the sec-
ond most limited by (Huisman & Weissing 2001). We parame-
terised a consumer-resource model to generate intransitive
dynamics amongst three consumers competing for three logis-
tically growing essential resources (Fig. 9a,b). We then simu-
lated the model using the same approach described under the

Figure 8 Percentage difference in qualitative accuracy of the fully

specified HOI model (beige) relative to the standard Lotka–Volterra
model (blue).

© 2019 John Wiley & Sons Ltd/CNRS

432 A. D. Letten and D. B. Stouffer Ideas and Perspective



previous section to generate ‘observed’ data from which we
can then infer the competition coefficients of standard and
higher-order models. We then followed the approach
described in Saavedra et al. (2017) to obtain structural repre-
sentations for the coexistence criteria. Briefly, this approach
evaluates the set of intrinsic growth rates consistent with feasi-
ble communities (all Ni [ 0 at equilibrium) given the con-
straints set by the matrix of competition coefficients (see
Saavedra et al. 2017).
Figure 9c shows the feasibility domain (set of intrinsic

growth rates leading to feasible equilibria) for each pair of
species (grey triangles) and for the triplet (grey-blue triangle)
derived from the fit of a standard Lotka–Volterra model. The
existence of a region in which the feasibility domains for all
species pairs intersect indicates that there is a vector of

intrinsic growth rates for which all pairs can coexist and the
triplet can coexist (the small interior grey triangle formed by
the intersection of the pairwise feasibility domains falls com-
pletely within the grey-blue interior triangle giving the feasibil-
ity domain of the triplet). In this instance, the actual vector of
intrinsic growth rates inferred from the model fits, denoted by
the orange dot, falls in a region where the triplet can still
coexist but species 1 and 2 are unable to coexist as a pair.
This is, however, at odds with the known dynamics of the
original data-generating consumer resource-model, and thus
reflects the failure of the standard Lotka–Volterra model to
accurately capture the system’s true dynamics.
In Fig. 9d, we regenerate the pairwise and triplet feasibility

domains using the pairwise coefficients from a model that also
includes inter-specific higher-order terms. The difference now

(a)
(b)

(c)

(d)

Figure 9 Structural representation of a resource-competition-based intransitive loop. (a) Linear per capita functional responses for three consumers to three

logistically growing essential resources, with each competitor limited by a different resource. (b) Consumer time series when initiated from the same

population sizes. (c) Structural feasibility domain using alphas from a standard Lotka–Volterra model. (d) Structural feasibility domain using alphas from

a Lotka–Volterra model including higher-order inter-specific terms.
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is that the inferred vector of intrinsic growth rates falls within
a region where the triplet can coexist due to intransitivity but
none of the pairs can coexist alone. This representation is
faithful to the dynamics of the data-generating mechanistic
model. The reason why the standard Lotka–Volterra model
misrepresents the system is it doesn’t capture its inherent non-
additivity. In contrast, the inclusion of higher-order terms in
the model improves the fit to the data and thus provides bet-
ter estimates for the pairwise alpha coefficients near to the
equilibrium. This then is a direct illustration of Lotka’s
(1924), and later MacArthur’s (1970), oft forgotten words of
caution on the conception of Lotka–Volterra as a Taylor
approximation around the equilibrium.
To add our own words of caution, it is critical to emphasise

that the reason we were able to confidently evaluate the feasi-
bility domain based solely on the alpha coefficients from a
higher-order model is because: (i) we know there exists a fixed
point equilibrium (Fig. 9b); and (ii) we know it is the only
non-trivial equilibrium. However, intransitivity and/or non-
additivity can also give rise to cyclical dynamics resulting in
large deviations in population densities around the mean, in
which case the higher-order terms will have a greater influence
on the long-run community state.

DISCUSSION

The prospect of extending our understanding of community
dynamics from simple, tractable systems to more realistic,
complex systems has fostered a revival in the study of HOIs
(Bairey et al. 2016; Grilli et al. 2017; Levine et al. 2017; May-
field & Stouffer 2017; Saavedra et al. 2017; Terry et al. 2017).
To date, however, there has been little emphasis on the mech-
anistic origins of the emergent non-additivity that these HOIs
aim to capture. Here we have shown that HOIs – defined as
non-additive effects of density on per capita growth – are per-
vasive and emerge under even the most restrictive of mecha-
nistic assumptions (e.g. non-logistic resource supply). We have
also demonstrated the utility of HOIs in phenomenological
models in terms of better approximating both short-term
dynamics and final community states. At the same time, our
study has made it clear that there remains considerable
nuance regarding how one should best define, implement and
interpret HOI models.
The hope of improving our predictive understanding of

more complex (non-pairwise) systems has been a central moti-
vation for much work on HOIs (Bairey et al. 2016; Grilli
et al. 2017; Levine et al. 2017; Mayfield & Stouffer 2017;
Saavedra et al. 2017). Although we did find that HOIs con-
spicuously improve predictive accuracy, we also see from a
mechanistic perspective that HOIs are just as likely to be dri-
ven by interactions between individuals belonging to just one
or two species as they are by interactions between individuals
belonging to three separate species. Through the mechanistic
lens, there is therefore little rationale for only perceiving HOIs
as a problem when confronted by three (or more) species. The
exception that proves the rule is the marked jump in relative
performance by the fully specified HOI model when going
from two to three species with linear functional responses
competing for logistically growing essential resources (Fig. 4).

That five of the other seven core scenarios actually show a
decrease in the performance of the fully specified HOI model
is testament to the equally important role of non-logistic
resource supply and/or resource extinction in generating non-
additivity. It is equally instructive to note, in the case of
logistically growing resources, that the change to a nonlinear
functional response in a two-species system results in a similar
increase in higher-order model performance as the change
from two to three species with linear functional responses.
The implication is that nonlinear functional responses, which
are a species level attribute, also have an effect on phe-
nomenological non-additivity that is comparable to the addi-
tion of a third consumer.
Independent to the dimensionality of HOIs, there also

remain both theoretical and empirical hurdles to the imple-
mentation of higher-order phenomenological models. Perhaps
foremost of the immediate obstacles is the sometime patholog-
ical behaviour of quadratic per capita growth functions, illus-
trated by the not infrequent population explosion in our long-
term dynamic simulations of higher-order models. That this
pathological behaviour seems to arise at a lower frequency in
models incorporating all higher-order terms offers, one hypo-
thetical solution, that is, fit a more complex model; however,
this is clearly far from ideal. Increasingly complexity not only
flies in the face of the raison d’être of modelling, but it also
presents a near insurmountable challenge to empiricists. Fit-
ting a fully specified higher-order model for three competitors
required inferring no less than 30 parameters. Generating suf-
ficient data synthetically is one thing, but acquiring it from
experimental or observational data on real organisms is a con-
siderable undertaking. A greater, longer-term challenge is to
discover a pathology-free yet parameter-sparse, nonlinear
function that captures the broadest spectrum of phenomeno-
logical non-additivities. Various Lotka–Volterra derivatives,
including quotient and exponential forms in annual plant
models (Hart et al. 2018), perhaps offer the most promising
avenues of development. At the same time, the ever accelerat-
ing sophistication of hierarchical statistical models is increas-
ingly helping researchers to obtain robust parameter estimates
in spite of low degrees of freedom (McElreath 2015). Needless
to say, there is plenty of room for empiricists, theoreticians
and statisticians to make valuable contributions to this evolv-
ing research program.
Alongside challenges to model-fitting, we clearly still lack

appropriate tools for evaluating criteria and contributions to
coexistence in the presence of HOIs, at least from a phe-
nomenological perspective. Structural techniques (e.g. Saave-
dra et al. 2017) provide a powerful tool when dynamics come
close to approximating an interaction chain (i.e. exhibit negli-
gible non-additivity). Furthermore, for systems exhibiting
point equilibria, incorporating HOIs into model fits might
afford much closer approximations to the dynamics near equi-
libria. At the same time, however, to the extent that HOIs
improve approximations around equilibria, we can also
assume that they increase the instability and structural sensi-
tivity of system behaviour, such that small changes to popula-
tion sizes or parameters are more likely to lead to qualitative
shifts in system state (Adamson & Morozov 2012; Aldebert
et al. 2016). At this stage, a recently-developed approach for
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evaluating the structural stability of nonlinear population
dynamics offers a promising route to the development of reli-
able criteria for evaluating coexistence in the presence of
HOIs (Cenci & Saavedra 2018). Nevertheless, it should also
be noted that the performance of the standard Lotka–Volterra
model in the analysis of the long-run state in our simulations
was often not far off that of the fully specified model (max
9%, Fig. 8). In other words, although HOIs are certainly
important for accurately quantifying population abundances,
they may not always be critical for capturing the qualitative
properties of a system. Furthermore, as might be expected,
the performance of the higher-order models relative to the
standard Lotka–Volterra model was markedly reduced when
the perturbation densities were limited to below half each spe-
cies’ carrying capacity (Figs S5–S9), indicating the latter pro-
vides improved predictions when densities fluctuate over a
narrower range. Taken together, these results suggests that
linear approximations may suffice when it comes to coexis-
tence analysis in some instances, particularly when evaluating
dynamics near to fixed points.
It also remains open to debate to what extent HOIs represent

distinct phenomena from so-called interaction chains (or what
Billick & Case (1994) refer to as indirect effects as distinct from
HOIs). To look at the equations that define a mechanistic
model of resource competition, there is no distinction. The only
way to conceive of HOIs through a mechanistic lens is to ask
whether a given system is characterised phenomenologically by
per capita growth rates that are non-additive functions of con-
sumer densities. Consequently, the distinction is mechanistically
artefactual. Rather than being a unique dynamic, an interaction
chain might be viewed more precisely as a corner-case under
which the emergent dynamics exhibit negligible non-additivity.
This viewpoint breaks with previous treatments of HOIs and
interaction chains where they have been represented as funda-
mentally distinct (Billick & Case 1994; Levine et al. 2017). One
argument is that HOIs and interaction chains operate over dif-
ferent time-scales, with the former having instantaneous effects
and the latter being characterised by the time-lag it takes for
densities to build up or mediate population dynamics (Billick &
Case 1994; Levine et al. 2017). The problem with this distinc-
tion is that it is reasonable to assume that the strength of the
HOI is itself density dependent. Even if we consider plastic or
behaviourally mediated traits such as plant rooting depth, the
extent to which an individual plant switches to a different depth
in the presence of a particular competitor will typically depend
on the number of that particular competitor surrounding it. It
is also telling that delineating HOIs from interaction chains in
any empirical system will be sensitive to the formulation of the
model used to fit the data (e.g. classic Lotka–Volterra vs. Bever-
ton–Holt vs. the Ricker model). Ultimately, these phenomena
lie along a continuum, with additive interactions on one end
and non-additive interactions on the other. It might be possible
to find anecdotal ecological examples that provide a compelling
fit to each end of this spectrum, but our expectation is that the
vast majority of scenarios can be located in the vast grey area in
between.
Considering our results as a whole, we ultimately found it

more useful to cast HOIs as a non-additivity problem as
opposed to the multi-species problem they are most

commonly associated with. This of course does not negate the
critical challenge of understanding when multi-species (> 2)
dynamics will deviate from those predicted from pairwise
interactions due to emergent indirect effects. Nevertheless,
given the aforementioned ambiguity in distinguishing between
additive and non-additive interactions in multi-species sys-
tems, we would argue a clearer way forward is to avoid con-
flating questions relating to indirect effects with those relating
to non-additivity. This is not to say they are independent of
each other – they clearly are not – but rather that, to a first
approximation, they represent orthogonal concerns.

CONCLUSION

MacArthur (1970) began his mechanistic derivation of Lotka–
Volterra competition by recognising the equations’ conception as
a coarse mathematical approximation. With the passage of time
and ecology’s shift to more and more complex empirical systems,
this crucial qualification seemingly fell by the wayside. As a
result, it simultaneously fuelled a proliferation of empirical
model fitting (Park 1948; Vandermeer 1969; Law & Watkinson
1987; Antonovics & Kareiva 1988) and reactionary critiques of
the proverbial straw man (Tilman 1987; Hall 1988). Our analysis
and discussion therefore shines a critical light on the merits and
demerits of both positions. On the one hand, we have shown that
higher-order interactions emerge under even the most basic
mechanistic assumptions; on the other, the basic system of equa-
tions were only ever intended as an analytical tool rather than as
a carbon copy of the full dynamics of real-world systems. Almost
50 years from MacArthur’s influential paper, it seems the time is
ripe for re-embracing community ecology’s canonical equations
in a suitably expanded form.
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