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are several parallel advances that make this approach pos-
sible. First, the volume of data on ecological systems that 
are available openly increases on a daily basis. This includes 
point-occurrence data (as in GBIF or BISON), but also tax-
onomic knowledge (through ITIS, NCBI or EOL) or trait 
and interactions data. In fact, there is a vast (and arguably 
under-exploited) amount of ecological information, that is 
now available without having to contact and secure autho-
rization from every contributor individually. Second, these 
data are often available in a programmatic way; as opposed 
to manually visiting data repositories, and downloading or 
copy-and-pasting datasets, several software packages offer 
the opportunity to query these databases automatically, 
considerably speeding up the data collection process. As 
opposed to manual collection, identification, and main-
tenance of datasets, most of these services implement web 
APIs (Application Programming Interface, i.e. services that 
allow users to query and/or upload data in a standard for-
mat). These services can be queried, either once or on a 
regular basis, to retrieve records with the desired properties. 
This ensures that the process is repeatable, testable, transpar-
ent, and (as long as the code is properly written) nearly error 
proof. Finally, most of the heavy lifting for these tasks can 
be done through a burgeoning ecosystem of packages and 
software that handles query formatting, data retrieval, and 
associated tasks, all the while exposing simple interfaces to 
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Ecologists are often asked to provide information and  
guidance to solve a variety of issues, across different scales. 
As part of the global biodiversity crisis, notable examples 
include predicting the consequences of the loss of trophic 
structure (Estes et al. 2011), rapid shifts in species distri-
butions (Gilman et al. 2010), and increased anthropogenic 
stress on species and their environment. Most of these press-
ing issues require the integration of a variety of ecological 
data and information, spanning different geographical and 
environmental scales, to be properly addressed (Thuiller 
et al. 2013). Because of these requirements, relying solely 
on de novo sampling of the ecological systems of interests is 
not a viable solution on its own. Chiefly, there are no global 
funding mechanisms available to finance systematic sam-
pling of biological data, and the spatial and temporal scales 
required to acquire meaningful data on biodiversity change 
are such that it would take a long time before realistic data 
would be available to support the decision process. While 
that data collection must continue, we propose that there are 
a large number of macroecological questions that could be 
addressed without additional data or with data acquired at 
minimal cost, by making use of open data and community-
developed software and platforms.

Existing datasets can, to an increasing extent, be used 
to build new datasets (henceforth synthetic datasets, since 
they represent the synthesis of several types of data). There 
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the global scale. In so doing, we highlight the most salient issues needing to be addressed before this approach can be used 
with a high degree of confidence.
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researchers. None of these are new data, in the sense that 
these collections represent the aggregation of thousands of 
ecological studies; the originality lies in the ability to query, 
aggregate, curate, and use these data consistently and in a 
new way using open solutions.

Hypothesis testing for large-scale systems is inherently 
limited by the availability of suitable datasets – most data 
collection results in small scale, local data, and it is not 
always clear how these can be used at more global scales. 
Perhaps as a result, developments in macroecology have 
primarily been driven by a search for patterns that are very 
broad both in scale and nature (Keith et al. 2012, Becknell 
et al. 2015). While it is obvious that collecting exhaustive 
data at scales that are large enough to be relevant can be 
an insurmountable effort (because of the monetary, time, 
and human costs needed), we suggest that macroecologists 
could, in parallel, build on existing databases, and aggre-
gate them in a way that allows direct testing of proposals 
stemming from theory. To us, this opens no less than a new 
way for ecologists to ask critical research questions, span-
ning from the local to the global, and from the organismal 
to the ecosystemic, scales. Here, we 1) outline approaches 
for integrating data from a variety of sources (both in 
terms of provenance, and type of ecological information), 
2) identify technical bottlenecks, 3) discuss issues related 
to scientific ethics and best practice, and 4) provide clear 
recommendations moving forward with these approaches 
at larger scales. Although we illustrate the principles and 
proposed approaches with a real-life example, the objec-
tive of this paper is to highlight the way different tools 
can be integrated in a single study, and to discuss the cur-
rent limitations of this approach. This approach can, for 
example, prove particularly fruitful if it allows researchers 
to either offer new interpretation of well-described macro-
ecological relationships, or to provide tests of hypotheses  
suggested by theoretical studies (Levin 2012).

An illustrative case-study

Food-web data, that is the determination of trophic  
interactions among species, are notoriously difficult to 
collect. The usual approach is to assemble literature data, 
expert knowledge, and additional information coming from 
field work, either as direct observation of feeding events or 
through gut-content analysis. Because of these technical 
constraints, food-web data are most often assembled based 
on sampling in a single location. Assessments of food web 
structure over space may therefore require comparisons of 
communities composed of different taxa. As a consequence, 
most food web properties over large (continental, global) 
spatial extents remain undocumented. For example, what 
is the relationship between latitude and connectance (the  
density of feeding interactions)? One possible way to 
approach this question is to collect data from different local-
ities, and document the relationship between latitude and 
connectance through regressions. The approach we illustrate 
uses broad-scale data integration to forecast the structure of 
a single system at the global scale (Pellissier et al. 2013). We 
are interested in predicting the structure of a pine-marsh 
food web, worldwide.

Interactions data

The food-web data were taken from Thompson et al. (2012), 
as made available in the IWDB database (< www.nceas.ucsb.
edu/interactionweb/html/thomps_towns.html >) – start-
ing from the Martins dataset (stream food web from a pine 
forest in Maine). Wetlands and other freshwater ecosystems 
are critically endangered and serve as a home to a host of 
endemic biodiversity (Fensham et al. 2011, Minckley et al. 
2013). Stream food webs in particular are important because 
they couple terrestrial and aquatic communities and ensure 
the maintenance of ecosystem services such as freshwater 
quality and flood regulation. Anthropogenic pressure on 
wetlands makes them particularly threatened. They repre-
sent a prime example of ecosystems for which data-driven 
prediction can be used to generate scenarios at a temporal 
scale relevant for conservation decisions, and at a faster rate 
than sampling allows.

The data from the original food web had 105 nodes, 
including vague denominations like Unidentified detritus 
or Terrestrial invertebrates. First, we aggregated all nodes to 
the genus level. Due to the high level of structure in trophic 
interactions emerging from taxonomic rank alone (Eklof 
et al. 2011, Stouffer et al. 2012, Eklöf and Stouffer 2015), 
aggregating to the genus level has the double advantage of 1) 
removing ambiguities on the identification of species and 2) 
allowing integration of data when any two species from given 
genera interact. Second, we removed all nodes that were not 
identified (Unidentified or Unknown in the original data). 
The cleaned network documented 227 interactions, between 
80 genera. We then used the name-checking functions from 
the taxize package (Chamberlain and Szöcs 2013) to perform 
the following steps. First, all names were resolved, and one 
of the following was applied: valid names were conserved, 
invalid names with a close replacement were corrected, 
and invalid names with no replacement were removed. In 
most situations, invalid names were typos in the spelling of 
valid ones. After this step, 74 genera with 189 interactions 
remained, representing a high quality genus-level food-web 
from the original sampling.

Because this food web was sampled locally, there is the 
possibility that interactions between genera are not reported; 
either because species from these genera do not interact or 
do not co-occur in the sampling location, or because of  
spatial mismatches between genus occurrence and sampling. 
To circumvent this, we queried the GLOBI database (Poelen 
et al. 2014) for each genus name, and retrieved all feeding 
interactions; this includes taxa from the original dataset, but 
also taxa that establish interactions with them even though 
these were not observed in the original sample. For all new 
genera retrieved through this method, we also retrieved their 
interactions with genera already in the network. The inflated 
network (original data plus data from GLOBI) has 368  
genera, and a total of 4796 interactions between them.

As a final step, we queried the GBIF taxonomic rank 
database with each of these (tentatively) genera names. 
Every tentative genus that was either not found, or whose 
taxonomic level was not genus, was removed from the  
network.

The code to reproduce this analysis is in the Supplementary 
material Appendix 1, 1_get_data.r.
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It should be noted that this analysis relies on databases, 
and a vast majority of information is confined to the primary 
literature. While it is possible to do manual literature surveys 
(Strong and Leroux 2014), this task becomes daunting for 
large number of species. Initiatives like text-mining (Milani 
et al. 2012) will speed up the rate at which we can recover 
interactions data from the literature – if publishers allow 
researchers to mine the literature they create.

Occurrence data and filtering

For each genus, we retrieved the known occurrences (approx. 
2  105) from GBIF and BISON. Because the ultimate goal 
is to perform spatial modeling of the structure of the net-
work, we removed genera for which fewer than 100 occur-
rences in the entire dataset. This stringent filter enables us 
1) to maintain high predictive powers for SDMs, and 2) to 
work on the genera for which we have ‘high-quality’ data. 
The cleaned food web had a total of 134 genera and 782 
interactions, for 118 269 presences. Given the curated pub-
licly available data, it represents the current best description 
of feeding interactions between species of this ecosystem. A 
visual depiction of the network is given in Fig. 1.

On its own, the fact that filtering for genera with over 
100 records reduced the sample size from 368 genera to 134 
indicates the importance of the deposition of all observations 
in public databases. This is because the analysis we present 
here, although cost-effective and enabling rapid evaluation 
of different scenarios, is only as good as the underlying data. 
Since most modeling tools require a minimal sample size in 
order to achieve acceptable accuracy, concerted efforts by the 
community and funding agencies to ensure that the minimal 
amount of data is deposited upon publication or acquisition 
is needed. It must also be noted that the threshold of 100 
occurrences is an arbitrary one.

The approach is amenable to sensitivity analysis, and 
indeed this will be a crucial component of future analyses. 
A taxon can have less observations than the threshold either 
because of under-sampling or under-reporting, or because it 
is naturally rare. In the context of food webs, species high-
er-up the food chain can be less common than primary pro-
ducers. To which extent these relationships between, trophic 

position and rarity, can influence the predictions, will have 
to receive attention.

The code to reproduce this analysis is in the Supple-
mentary material Appendix 1, 1_get_data.r.

Species distribution model

For each species in this subset of data, we retrieved the 
nineteen bioclim variables (Hijmans et al. 2005), with a 
resolution of 5 arc-minutes. This enabled us to build cli-
matic envelope models, using ‘biolcim’, for each species. 
These models tend to be more conservative than alternate 
modeling strategies, in that they predict smaller range sizes 
(Hijmans and Graham 2006), but they also perform well 
overall for presence-only data (Elith et al. 2006, Elith and 
Graham 2009). The output of these models is, for species 
i, the probability of an observation P(i) within each pixel.  
We appreciate that this is a coarse analysis, but its purpose is 
to highlight how to combine different data. A discussion of 
the limitations of this approach is given below.

The code to reproduce this analysis is in the Supple-
mentary material Appendix 2, 2_get_sdm.r.

Assembly

For every interactions in the food web, we estimated  
the probability of it being observed in each pixel as the  
product of the probabilities of observing each species on 
its own: P(Lij) µ P(i)P(j). This resulted in one LDM (‘link  
distribution model’) for each interaction. It should be noted 
that co-occurrence is considered to be entirely neutral, in 
that we assume that the probability that two species co-occur 
is independent (i.e. a predator is not more likely to be pres-
ent if there are, or are not, potential prey). We also assume 
no variability in interactions, as in Havens (1992). It is likely 
that, in addition to their occurrence, species co-occurrences 
and interactions (Poisot et al. 2015) are affected by climate. 
Whether or not these constitute acceptable assumptions has 
to be decided for each study.

The code to reproduce this analysis is in the Supple-
mentary material Appendix 3, 3_get_ldm.r.

Figure 1. Visual representation of the initial data. On the left, we show the food web (original data and interactions from GLOBI), with 
genera forming modules (clusters of densely connected nodes) in different colors. On the right, we show the occurrence data where each 
dot represents one observation from BISON and GBIF (again color coded by module).
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Attribution stacking and intellectual provenance

The merging of large databases has already created a conflict 
of how to properly attribute data provenance (Carroll 2015). 
Here there are at least two core issues that will require com-
munity consultation in order to be resolved. First, what is 
the proper mode of attribution when a very large volume 
of data are aggregated? Second, what should be the intel-
lectual property of the synthetic dataset? Currently, citations 
(whether to articles or datasets) are only counted when they 
are part of the main text. The simple example outlined here 
relies on well over a thousand references, and it makes little 
sense to expect that they would be provided in the main text 
(nor do we expect any journal to accept a manuscript with 
over a hundred references or so, with rare exceptions). One 
intermediate solution would be to collate these references in 
a supplement, but it is unclear that these would be counted 
(Seeber 2008), and therefore contribute to the impact of 
each individual dataset (and hence, collector; Kueffer et al. 
2011). This is a problem that we argue is best solved by  
publishers; proper attribution and credit is key to provide 
incentives to data release (Kenall et al. 2014, Whelan et al. 
2014, Pronk et al. 2015). As citations are currently the ‘cur-
rency’ of scientific impact, publishers have a responsibility 
not only to ensure that data are available (which many already 
do), but that they are recognized; data citation, no matter how 
many data are cited, is a way to achieve this goal. The synthetic 
dataset, on the other hand, can reasonably be understood 

Based on this information, we generated example illus-
trations (using Supplementary material Appendix 4, 4_
draw_figures.r – Fig. 2). The system is characterized, at the 
world-wide scale, by an increased number of genera and 
interactions in temperate areas, with diversity and interac-
tion hotspots in western Europe, north-east and south-
Atlantic America, and the western coasts of New Zealand 
and Australia – this is clearly symmetrical along the equator. 
Network structure, here measured by network connectance, 
follows a different trend than genera richness or interactions 
do. Connectance is stable along the gradient, but declines at 
extreme latitudes (Fig. 2).

Challenges moving forward

The example provided illustrates the promises of data-driven 
approaches. It builds on new data availability, new statistical 
and computational tools, and new ways to integrate both. 
Most importantly, it allows us to use ‘classical’ ecological 
data in a resolutely novel way, thus presenting an important 
opportunity to bridge a gap between field-based and theory-
based macroecological research. But as with every method-
ological advancement, comes a number of challenges and 
limitations. Here we discuss a few we believe are important. 
In doing so, we hope to define these issues and emphasize 
that each of them, on their own, should be the subject of 
further discourse.

Figure 2. Maps for the number of genera, number of interactions, and connectance in the assembled networks (on the left) as well as their 
underlying relationship with latitude (on the right). The tropics are shaded in light yellow. The average value of each output has been 1) 
averaged across latitudes and 2) z-score transformed; this emphasizes variations across the gradient as opposed to absolute values (which is 
a more conservative way of looking at the results since the predictions are qualitative).
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literacy of ecologists, and recognize that there is value in the 
diversity of tools one can use to carry out more demanding 
studies. For example, both Python and Julia are equally as 
user friendly as R while also being more powerful and better 
suited for computationally- or memory-intensive analyses.

Standards and best practices

In conducting this analysis, we noticed that a common issue 
was the identification of species and genera. All of these data-
sets were deposited by individual scientists; whether we like 
it or not, individuals are prone to failure in a very different 
way than the ‘Garbage in, garbage out’ idea that applies to 
computer programs. Using tools such as taxize (Chamberlain 
and Szöcs 2013) can allow us to resolve a few of the uncer-
tainties, yet this must be done every time the data are  
queried and requires the end user to make educated guesses 
as to what the ‘true’ identity of the species is. These limita-
tions can be overcome, on two conditions. Database main-
tainers should implement automated curation of the data for 
which they are stewards, and identify potential mistakes and 
correct them upstream, so that users download high-quality, 
high-reliability data. Data contributors should rely more 
extensively on biodiversity identifiers (such as TSN, GBIF, 
NCBI Taxonomy ID, etc.), to make sure that even when 
there are typos in the species name, they can be matched 
across datasets. Constructing this dataset highlighted a fun-
damental issue: the rate-limiting step is rarely the availability 
of appropriate tools or platforms, but instead it is the adop-
tion of common standards and the publication of data in a 
way that conforms to them. In addition, Maldonado et al. 
(2015) emphasize that point-occurence data are not always 
properly reported – for example, the center of a country or 
region can be used when no other information is known; this 
requires an improved dialogue between data collectors and 
data curators, to highlight which practices have the highest 
risk of biasing future analyses.

Propagation of error

There are always caveats to using synthetic datasets. First, 
the extent to which each component dataset is adequately 
sampled is unknown (although there exist ways to assess the 
overall representativeness of the assembled dataset; Schmill 
et al. (2014)). This can create gaps in the information that 
is available when all component datasets are being merged. 
Second, because it is unlikely that all component datasets 
were acquired using reconcilable standards and protocol, it 
is likely that much of the quantitative information needs be 
discarded, and therefore the conservative position is to do 
qualitative analyses only. Although these have to be kept in 
mind, we do not think they are so sufficient as to prevent use 
and evaluation of the approach we suggest. For one thing, 
as we illustrate, at large spatial and organizational scales, 
coarse-grained analyses are still able to pick up qualitative 
differences in community structure. Second, most emer-
gent properties are relatively insensitive to fine-scale error; 
for example, Gravel et al. (2013) show that even though a 
simple statistical model of food-web structure mispredicts 

as a novel product; there is technical and intellectual effort 
involved in producing it, and although it is a derivative work, 
we would encourage authors to deposit it anew. Nevertheless, 
we would like to see a more meaningful dialogue between  
editors, publishers, and authors, to determine how the  
citation of thousands of datasets ought to be handled across 
the editorial process.

Sharing of code and analysis pipeline

Ideally, authors should release their analysis pipeline (that 
is, the series of steps, represented by code, needed to repro-
duce the analysis starting from a new dataset) in addition 
to the data and explanation of the steps. The pipeline can 
take the form of a makefile (which allows one to generate 
the results, from the raw data, without human interven-
tion), or be all of the relevant code that allows to re-generate 
the figures and results. For example, we have released all of  
the R code that was used to generate the figures at  
 https://zenodo.org/record/31975 . Sharing the analysis 
pipeline has several advantages. First, it is a first step towards 
ensuring the quality of analyses, since reviewers can (and 
should reasonably be expected to) look at the source code. 
Second, it provides a template for future analyses – instead 
of re-developing the pipeline from scratch, authors can re-
use (and acknowledge) the previous code base and build 
on it. Finally, it helps identify areas of future improvement. 
The development of software should primarily aim to make  
the work of researchers easier. Looking at commonalities in 
the analytical pipelines for which no ready-made solutions 
exists will be a great way to influence priorities in software 
development. Properly citing and reviewing computer code 
is still an issue, because software evolves whereas papers 
remain (for now) frozen in the state where they were pub-
lished. Being more careful with citation, notably by includ-
ing version number (White 2015) or using unique identifiers 
(Poisot 2015), will help long-term reproducibility.

Computational literacy

This approach hardly qualifies as big data; nevertheless, it 
relies on the management and integration of a large volume 
of heterogeneous information, both qualitatively larger than 
the current ‘norm’. The first challenge is being able to man-
age these data; it requires data management skills that are not 
usually needed when the scale of the dataset is small, and, 
fallible though the process may be, when data can reason-
ably be inspected manually. The second challenge is being 
able to manipulate these data; even within the context of 
this simple use-case, the data do not fit in the memory of R 
(arguably the most commonly known and used software in 
ecology) without some adjustments. Once these issues were 
overcome, running the analysis involved a few hours worth 
of computation time. Computational approaches are going 
to become increasingly common in ecology (Hampton et al. 
2012, 2013), and are identified by the community as both in-
demand skills and as not receiving enough attention in cur-
rent ecological curricula (Barraquand et al. 2014). It seems 
that efforts should be allocated to raise the computational 



407

Albouy, C. et al. 2014. From projected species distribution to  
food-web structure under climate change. – Global Change 
Biol. 20: 730–741.

Antonelli, A. et al. 2014. SUPERSMART: ecology and evolution 
in the era of big data. – PeerJ PrePrints 2: e501.

Barraquand, F. et al. 2014. Lack of quantitative training among 
early-career ecologists: a survey of the problem and potential 
solutions. – PeerJ 2: e285.

Becknell, J. M. et al. 2015. Assessing interactions among changing 
climate, management, and disturbance in forests: a macrosys-
tems approach. – BioScience 65: 263–274.

Carroll, M. W. 2015. Sharing research data and intellectual  
property law: a primer. – PLoS Biol. 13: e1002235.

Chamberlain, S. A. and Szöcs, E. 2013. taxize: taxonomic search 
and retrieval in R. – F1000Res. 2: 191.

Eklöf, A. and Stouffer, D. B. 2015. The phylogenetic component 
of food web structure and intervality. – Theor. Ecol., in press.

Eklof, A. et al. 2011. Relevance of evolutionary history for food 
web structure. – Proc. R. Soc. B 279: 1588–1596.

Elith, J. and Graham, C. H. 2009. Do they? How do they? WHY 
do they differ? On finding reasons for differing performances 
of species distribution models. – Ecography 32: 66–77.

Elith, J. et al. 2006. Novel methods improve prediction of  
species’ distributions from occurrence data. – Ecography 29: 
129–151.

Estes, J. A. et al. 2011. Trophic downgrading of planet Earth.  
– Science 333: 301–306.

Fensham, R. J. et al. 2011. Four desert waters: setting arid  
zone wetland conservation priorities through understanding 
patterns of endemism. – Biol. Conserv. 144: 2459–2467.

Gilman, S. E. et al. 2010. A framework for community interactions 
under climate change. – Trends Ecol. Evol. 25: 325–331.

Gravel, D. et al. 2013. Inferring food web structure from preda-
torprey body size relationships. – Methods Ecol. Evol. 4: 
1083–1090.

Hampton, S. E. et al. 2012. Ecological data in the information age. 
– Front. Ecol. Environ. 10: 59–59.

Hampton, S. E. et al. 2013. Big data and the future of ecology.  
– Front. Ecol. Environ. 11: 156–162.

Havens, K. 1992. Scale and structure in natural food webs.  
– Science 257: 1107–1109.

Hijmans, R. J. and Graham, C. H. 2006. The ability of climate 
envelope models to predict the effect of climate change on 
species distributions. – Global Change Biol. 12: 2272–2281.

Hijmans, R. J. et al. 2005. Very high resolution interpolated  
climate surfaces for global land areas. – Int. J. Climatol. 25: 
1965–1978.

Keith, S. A. et al. 2012. What is macroecology? – Biol. Lett. 
rsbl20120672.

Kenall, A. et al. 2014. An open future for ecological and evolution-
ary data? – BMC Ecol. 14: 10.

Kueffer, C. et al. 2011. Fame, glory and neglect in meta-analyses. 
– Trends Ecol. Evol. 26: 493–494.

Levin, S. A. 2012. Towards the marriage of theory and data.  
– Interface Focus 2: 141–143.

Maldonado, C. et al. 2015. Estimating species diversity and distri-
bution in the era of Big Data: to what extent can we trust 
public databases? – Global Ecol. Biogeogr. 24: 973–984.

Milani, G. A. et al. 2012. Machine learning and text mining of 
trophic links. – 2012 11th International Conference on 
Machine Learning and Applications.

Minckley, T. A. et al. 2013. The relevance of wetland conservation 
in arid regions: a re-examination of vanishing communities in 
the American southwest. – J. Arid Environ. 88: 213–221.

Pellissier, L. et al. 2013. Combining food web and species  
distribution models for improved community projections.  
– Ecol. Evol. 3: 4572–4583.

some individual interactions, it produces communities with 
realistic emergent properties. Which level of error is accept-
able needs to be determined for each application, but we 
argue that the use of synthetic datasets is a particularly cost- 
and time-effective approach for broad-scale description of 
community-level measures.

Conclusion – why not?

In light of the current limitations and challenges, one might 
be tempted to question the ultimate validity and utility of 
this approach. Yet there are several strong arguments, that 
should not be overlooked, in favor of its use. As we demon-
strate with this example, synthetic datasets allow us to rapidly 
generate qualitative predictions at large scales. These can, for 
example, serve as a basis to forecast the effect of scenarios of 
climate change on community properties (Albouy et al. 2012, 
2014). Perhaps more importantly, synthetic datasets will be 
extremely efficient at identifying gaps in our knowledge of 
biological systems: either because there is high uncertainty or 
sensitivity to choices in the model output, or because there  
is no available information to incorporate in these models. 
By building these datasets, it will be easier to assess the extent 
of our knowledge of biodiversity, and to identify areas or 
taxa of higher priority for sampling. For this reason, using 
synthetic datasets is not a call to do less field-based science. 
Quite the contrary: in addition to highlighting areas of 
high uncertainty, synthetic datasets provide predictions that 
require field-based validation. Only through this feedback 
can we build enough confidence in this approach to apply 
it for more ambitious questions, or disqualify it altogether. 
Meanwhile, the use of synthetic datasets will necessitate the 
development of both statistical methodology and software; 
this is one of the required steps towards real-time use and 
analysis of ecological data (Antonelli et al. 2014). We appre-
ciate that this approach currently comes with some limita-
tions – they are unlikely to be overcome except with increased 
use, testing, and validation. Since the community already 
built effective and user-friendly databases and tools, there is  
very little cost (both in time and in funding) in trying these 
methods and there is also the promise of great potential.
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